初中数学浙教版九年级上册第3章 圆的基本性质综合与测试同步训练题
展开
这是一份初中数学浙教版九年级上册第3章 圆的基本性质综合与测试同步训练题,共31页。试卷主要包含了小明不慎把家里的圆形镜子打碎了,下列语句中,正确的有等内容,欢迎下载使用。
2021-2022浙教版九上第三章圆的基本性质复习题
时间120分钟 满分120分
一.选择题(每小题3分,共36分)
1.AB=12cm,过A、B两点画半径为6cm的圆,能画的圆的个数为( )
A.0个 B.1个 C.2个 D.无数个
2.已知△ABC中,AB=BC,若以点B为圆心,以AB为半径作圆,则点C( )
A.在⊙B上 B.在⊙B外 C.在⊙B内 D.不能确定
3.小明不慎把家里的圆形镜子打碎了(如图),其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是( )
A.① B.② C.③ D.④
4.如图所示,⊙O是△ABC的外接圆,已知∠ABO=25°,则∠ACB的大小为( )
A.50° B.55° C.65° D.75°
5.如图,在Rt△ABC中,∠ACB=90°,将Rt△ABC绕点C按顺时针方向旋转一定角度得到Rt△DEC,点D恰好落在边AB上.若∠B=20°,则∠BCE的度数为( )
A.20° B.40° C.60° D.80°
6.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )
A.1米 B.(4﹣)米 C.2米 D.(4+)米
7.下列语句中,正确的有( )
①相等的圆心角所对的弧相等;
②等弦对等弧;
③长度相等的两条弧是等弧;
④经过圆心的每一条直线都是圆的对称轴.
A.1个 B.2个 C.3个 D.4个
8.如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于( )
A. B. C. D.
9.如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为( )
A.45° B.60° C.72° D.36°
10.如图,边长为1的正六边形ABCDEF放置于平面直角坐标系中,边AB在x轴正半轴上,顶点F在y轴正半轴上,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,那么经过第2025次旋转后,顶点D的坐标为( )
A.(﹣,﹣) B.(,﹣) C.(﹣,) D.(﹣,﹣)
11.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为( )
A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
12.某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为( )
A.8πm B.4πm C.πm D.πm
二.填空题(每小题4分,共24分)
13.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为 .
14.小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量的弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为 cm.
15.如图,AB是⊙O的弦,C是的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为 cm.
16.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是 .
17.如图,作⊙O的任意一条直径FC,分别以F、C为圆心,以FO的长为半径作弧,与⊙O相交于点E、A和D、B,顺次连接AB、BC、CD、DE、EF、FA,得到六边形ABCDEF,则⊙O的面积与阴影区域的面积的比值为 .
18.如图所示,AB为⊙O的直径,AB=2,OC是⊙O的半径,OC⊥AB,点D在上,=2,点P是OC上一动点,则阴影部分周长的最小值为 .
三.解答题(共60分)
19.(8分)将图中的破轮子复原,已知弧上三点A,B,C.
(1)画出该轮的圆心;
(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.
20.(8分)如图,矩形ABCD中AB=3,AD=4.作DE⊥AC于点E,作AF⊥BD于点F.
(1)求AF、AE的长;
(2)若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求⊙A的半径r的取值范围.
21.(8分)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.
(1)求证:∠BAC=2∠ABD;
(2)当△BCD是等腰三角形时,求∠BCD的大小.
22.(10分)如图,圆O中两条互相垂直的弦AB,CD交于点E.
(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
(2)点F在CD上,且CE=EF,求证:AF⊥BD.
23.(10分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.
(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.
24.(8分)如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径;
(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.
25.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.
(1)求证:AE=ED;
(2)若AB=6,∠ABC=30°,求图中阴影部分的面积.
2021-2022浙教版九上第三章圆的基本性质复习题
参考答案与试题解析
一.选择题
1. AB=12cm,过A、B两点画半径为6cm的圆,能画的圆的个数为( )
A.0个 B.1个 C.2个 D.无数个
【分析】先作AB的垂直平分线l,交AB于O点,然后以O为圆心,以6cm为半径作圆即可;
【解答】解:这样的圆能画1个.如图:
作AB的垂直平分线l,交AB于O点,然后以O为圆心,以6cm为半径作圆,
则⊙O为所求;
故选:B.
2.已知△ABC中,AB=BC,若以点B为圆心,以AB为半径作圆,则点C( )
A.在⊙B上 B.在⊙B外 C.在⊙B内 D.不能确定
【分析】根据点与圆的位置关系判断即可.
【解答】解:如图,
∵BC=BA,
∴点C在⊙B上,
故选:A.
3.小明不慎把家里的圆形镜子打碎了(如图),其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是( )
A.① B.② C.③ D.④
【分析】利用段完整的弧结合垂径定理确定圆心即可.
【解答】解:第①块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.
故选:A.
4.如图所示,⊙O是△ABC的外接圆,已知∠ABO=25°,则∠ACB的大小为( )
A.50° B.55° C.65° D.75°
【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.
【解答】解:△AOB中,OA=OB,∠ABO=25°,
∴∠AOB=180°﹣2∠ABO=130°,
∴∠ACB=∠AOB=65°,
故选:C.
5.如图,在Rt△ABC中,∠ACB=90°,将Rt△ABC绕点C按顺时针方向旋转一定角度得到Rt△DEC,点D恰好落在边AB上.若∠B=20°,则∠BCE的度数为( )
A.20° B.40° C.60° D.80°
【分析】根据直角三角形的性质求出∠A=70°,再利用旋转及等腰三角形性质求得∠ACD=40°,即可求解.
【解答】解:∵∠ACB=90°,∠B=20°,
∴∠A=70°,
由旋转知:CA=CD,∠ACD=∠BCE,
∴∠ADC=∠A=70°,
∴∠ACD=40°,
∴∠BCE=40°,
故选:B.
6.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )
A.1米 B.(4﹣)米 C.2米 D.(4+)米
【分析】连接OC交AB于D,连接OA,根据垂径定理得到AD=AB,根据勾股定理求出OD,结合图形计算,得到答案.
【解答】解:连接OC交AB于D,连接OA,
∵点C为运行轨道的最低点,
∴OC⊥AB,
∴AD=AB=3(米),
在Rt△OAD中,OD===(米),
∴点C到弦AB所在直线的距离CD=OC﹣OD=(4﹣)米,
故选:B.
7.下列语句中,正确的有( )
①相等的圆心角所对的弧相等;
②等弦对等弧;
③长度相等的两条弧是等弧;
④经过圆心的每一条直线都是圆的对称轴.
A.1个 B.2个 C.3个 D.4个
【分析】根据圆心角,弧,弦之间的关系,等弧,轴对称等知识一一判断即可.
【解答】解:①相等的圆心角所对的弧相等,错误,条件是同圆或等圆中.
②等弦对等弧,错误,弦所对的弧有两条,不一定相等.
③长度相等的两条弧是等弧,错误,等弧是完全重合的两条弧.
④经过圆心的每一条直线都是圆的对称轴.正确.
故选:A.
8.如图,AB是⊙O的弦,且AB=6,点C是弧AB中点,点D是优弧AB上的一点,∠ADC=30°,则圆心O到弦AB的距离等于( )
A. B. C. D.
【分析】根据题意连接OA、OC,OC交AB于点E,根据垂径定理推出OC⊥AB,且AE=BE=3,再由圆周角定理推出∠AOC=2∠ADC=60°,从而根据直角三角形的性质进行求解即可.
【解答】解:如图,
连接OA、OC,OC交AB于点E,
∵点C是弧AB中点,AB=6,
∴OC⊥AB,且AE=BE=3,
∵∠ADC=30°,
∴∠AOC=2∠ADC=60°,
∴OE=AE=,
故圆心O到弦AB的距离为.
故选:C.
9.如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为( )
A.45° B.60° C.72° D.36°
【分析】根据圆内接四边形的性质得到∠BAD+∠BCD=180°,根据圆周角定理得到∠BOD=2∠BAD,根据菱形的性质得到∠BOD=∠BCD,计算即可.
【解答】解:∵四边形ABCD为⊙O的内接四边形,
∴∠BAD+∠BCD=180°,
由圆周角定理得:∠BOD=2∠BAD,
∵四边形OBCD为菱形,
∴∠BOD=∠BCD,
∴∠BAD+2∠BAD=180°,
解得:∠BAD=60°,
故选:B.
10.如图,边长为1的正六边形ABCDEF放置于平面直角坐标系中,边AB在x轴正半轴上,顶点F在y轴正半轴上,将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,那么经过第2025次旋转后,顶点D的坐标为( )
A.(﹣,﹣) B.(,﹣) C.(﹣,) D.(﹣,﹣)
【分析】如图,连接AD,BD.首先确定点D的坐标,再根据6次一个循环,由2025÷6=337•••3,推出经过第2025次旋转后,顶点D的坐标与第三次旋转得到的D3的坐标相同,由此即可解决问题.
【解答】解:如图,连接AD,BD.
在正六边形ABCDEF中,AB=1,AD=2,∠ABD=90°,
∴BD===,
在Rt△AOF中,AF=1,∠OAF=60°,
∴∠OFA=30°,
∴OA=AF=,
∴OB=OA+AB=,
∴D(,),
∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,
∴6次一个循环,
∵2025÷6=337•••3,
∴经过第2025次旋转后,顶点D的坐标与第三次旋转得到的D3的坐标相同,
∵D与D3关于原点对称,
∴D3(﹣,﹣),
∴经过第2025次旋转后,顶点D的坐标(﹣,﹣),
故选:A.
11.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为( )
A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
【分析】连接BD,根据在同圆或等圆中,相等的圆心角所对的弧,所对的弦分别相等,利用面积割补法可得阴影部分的面积等于弓形面积,即等于扇形CBD减去直角三角形CBD的面积之差.
【解答】解:连接BD,EF,如图,
∵正方形ABCD的边长为2,O为对角线的交点,
由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.
∵点E,F分别为BC,AD的中点,
∴FD=FO=EO=EB=1,
∴,OB=OD.
∴弓形OB=弓形OD.
∴阴影部分的面积等于弓形BD的面积.
∴S阴影=S扇形CBD﹣S△CBD==π﹣2.
故选:C.
12.某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长为( )
A.8πm B.4πm C.πm D.πm
【分析】根据线段的和差得到OA=OC+AC,然后根据弧长公式即可得到结论.
【解答】解:∵OC=12m,AC=4m,
∴OA=OC+AC=12+4=16(m),
∵∠AOB=120°,
∴弯道外边缘的长为:=(m),
故选:C.
二.填空题(共6小题)
13.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为 (7,4) .
【分析】作AC⊥x轴于点C,由旋转的性质可得BC=A'O'=OA=3,A'C=O'B=OB=4,进而求解.
【解答】解:作AC⊥x轴于点C,
由旋转可得∠O'=90°,O'B⊥x轴,
∴四边形O'BCA'为矩形,
∴BC=A'O'=OA=3,A'C=O'B=OB=4,
∴点A'坐标为(7,4).
故答案为:(7,4).
14.小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量的弧AB的中心C到AB的距离CD=1.6cm,AB=6.4cm,很快求得圆形瓦片所在圆的半径为 4 cm.
【分析】先根据垂径定理的推论得到CD过圆心,AD=BD=3.2cm,设圆心为O,连接OA,如图,设⊙O的半径为Rcm,则OD=(R﹣1.6)cm,利用勾股定理得到(R﹣1.6)2+3.22=R2,然后解方程即可.
【解答】解:∵C点是的中点,CD⊥AB,
∴CD过圆心,AD=BD=AB=×6.4=3.2(cm),
设圆心为O,连接OA,如图,
设⊙O的半径为Rcm,则OD=(R﹣1.6)cm,
在Rt△OAD中,(R﹣1.6)2+3.22=R2,解得R=4(cm),
所以圆形瓦片所在圆的半径为4cm.
故答案为4.
15.如图,AB是⊙O的弦,C是的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为 5 cm.
【分析】先根据圆心角、弧、弦的关系和垂径定理得出各线段之间的关系,再利用勾股定理求解出半径即可.
【解答】解:如图,连接OA,
∵C是的中点,
∴D是弦AB的中点,
∴OC⊥AB,AD=BD=4,
∵OA=OC,CD=2,
∴OD=OC﹣CD=OA﹣CD,
在Rt△OAD中,
OA2=AD2+OD2,即OA2=16+(OA﹣2)2,
解得OA=5,
故答案为:5.
16.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是 (﹣,1) .
【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2,所以A(﹣2,0),B(0,2),然后利用线段的中点坐标公式得到D点坐标.
【解答】解:∵四边形ABOC为圆的内接四边形,
∴∠ABO+∠ACO=180°,
∴∠ABO=180°﹣120°=60°,
∵∠AOB=90°,
∴AB为⊙D的直径,
∴D点为AB的中点,
在Rt△ABO中,∵∠ABO=60°,
∴OB=AB=2,
∴OA=OB=2,
∴A(﹣2,0),B(0,2),
∴D点坐标为(﹣,1).
故答案为(﹣,1).
17.如图,作⊙O的任意一条直径FC,分别以F、C为圆心,以FO的长为半径作弧,与⊙O相交于点E、A和D、B,顺次连接AB、BC、CD、DE、EF、FA,得到六边形ABCDEF,则⊙O的面积与阴影区域的面积的比值为 .
【分析】连接EB,AD,将图中阴影部分面积拼补为△EDO与△AOB面积之和,进一步确定△EDO、△AOB是正三角形,从而求出阴影部分的面积=×r×r×2,即可求解.
【解答】解:连接EB,AD,
设⊙O的半径为r,
⊙O的面积S=πr2,
弓形EF,AF的面积与弓形EO,AO的面积相等,
弓形CD,BC的面积与弓形OD,OB的面积相等,
∴图中阴影部分的面积=S△EDO+S△ABO,
∵OE=OD=AO=OB=OF=OC=r,
∴△EDO、△AOB是正三角形,
∴阴影部分的面积=×r×r×2=r2,
∴⊙O的面积与阴影区域的面积的比值为,
故答案为:.
18.如图所示,AB为⊙O的直径,AB=2,OC是⊙O的半径,OC⊥AB,点D在上,=2,点P是OC上一动点,则阴影部分周长的最小值为 .
【分析】B是A关于OC的对称点,连接BD则就是AP+PD的最小值.根据已知条件可以知道∠ABD=30°,由于AB是直径,所以∠ADB=90°,解直角三角形求出BD,利用弧长公式求出的长即可.
【解答】解:如图,连接BD,AD,PB.
根据已知得B是A关于OC的对称点,
所以BD就是AP+PD的最小值,
∵=2,而弧AC的度数是90°的弧,
∴的度数是60°,
∴∠ABD=30°,
∵AB是直径,
∴∠ADB=90°,
而AB=2,
∴BD=,
∵的长==,
∴AP+PD的最小值是,
∴阴影部分的周长的最小值为+.
故答案为:+.
三.解答题(共7小题)
19.将图中的破轮子复原,已知弧上三点A,B,C.
(1)画出该轮的圆心;
(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.
【分析】(1)根据垂径定理,分别作弦AB和AC的垂直平分线交点即为所求;
(2)连接AO,OB,利用垂径定理和勾股定理可求出圆片的半径R.
【解答】解:(1)如图所示:分别作弦AB和AC的垂直平分线交点O即为所求的圆心;
(2)连接AO,OB,BC,BC交OA于D.
∵BC=16cm,
∴BD=8cm,
∵AB=10cm,
∴AD=6cm,
设圆片的半径为R,在Rt△BOD中,OD=(R﹣6)cm,
∴R2=82+(R﹣6)2,
解得:R=cm,
∴圆片的半径R为cm.
20.如图,矩形ABCD中AB=3,AD=4.作DE⊥AC于点E,作AF⊥BD于点F.
(1)求AF、AE的长;
(2)若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求⊙A的半径r的取值范围.
【分析】(1)先利用勾股定理计算出AC和BD,再利用面积法计算出AF、DE,然后根据勾股定理计算出AE;
(2)利用B、C、D、E、F到点A的距离可判断⊙A的半径r的取值范围.
【解答】解:(1)∵矩形ABCD中AB=3,AD=4,
∴AC=BD==5,
∵AF•BD=AB•AD,
∴AF==,
同理可得DE=,
在Rt△ADE中,AE==;
(2)∵AF<AB<AE<AD<AC,
∴若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,即点F在圆内,点D、C在圆外,
∴⊙A的半径r的取值范围为2.4<r<4.
21.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.
(1)求证:∠BAC=2∠ABD;
(2)当△BCD是等腰三角形时,求∠BCD的大小.
【分析】(1)连接OA并延长AO交BC于E,证明∠BAC=2∠BAE和∠ABD=∠BAE即可得结论,
(2)设∠ABD为x,用x表示出有关的角,再列方程即得答案.
【解答】解(1)连接OA并延长AO交BC于E,
∵AB=AC,
∴弧AB=弧AC,
∵AE过圆心O,
∴AE垂直平分BC(平分弧的直径垂直平分弧所对的弦),
∴AE平分∠BAC,
∴∠BAC=2∠BAE,
∵OA=OB,
∴∠ABD=∠BAE,
∴∠BAC=2∠ABD;
(2)设∠ABD=x,
由(1)知∠BAC=2∠ABD=2x,
∴∠BDC=3x,
△BCD是等腰三角形,
①若BD=BC,
则∠C=∠BDC=3x,
∵AB=AC,
∴∠ABC=∠C=3x,
在△ABC中,∠ABC+∠C+∠BAC=180°,
∴3x+3x+2x=180°,
解得x=22.5°,
∴∠BCD=3x=67.5°,
②若BC=CD,则∠BDC=∠CBD=3x,
∴∠ABC=∠ACB=4x,
在△ABC中,∠ABC+∠C+∠BAC=180°,
∴4x+4x+2x=180°,
∴x=18°,
∴∠BCD=4x=72°,
综上所述,△BCD是等腰三角形,∠BCD为67.5°或72°.
22.如图,圆O中两条互相垂直的弦AB,CD交于点E.
(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
(2)点F在CD上,且CE=EF,求证:AF⊥BD.
【分析】(1)连接OD,由垂径定理推论可得∠OMD=90°,在Rt△OMD中用勾股定理即可得半径;
(2)连接AC,延长AF交BD于G,由已知可证△ACF是等腰三角形,∠FAE=∠CAE,又弧BC=弧BC,有∠CAE=∠CDB,故∠FAE=∠CDB,即可由∠CDB+∠B=90°,得∠AGB=90°,从而得证AF⊥BD.
【解答】解:(1)连接OD,如图:
∵M是CD的中点,CD=12,
∴DM=CD=6,OM⊥CD,∠OMD=90°,
Rt△OMD中,OD=,且OM=3,
∴OD==3,即圆O的半径长为3;
(2)连接AC,延长AF交BD于G,如图:
∵AB⊥CD,CE=EF,
∴AB是CF的垂直平分线,
∴AF=AC,即△ACF是等腰三角形,
∵CE=EF,
∴∠FAE=∠CAE,
∵=,
∴∠CAE=∠CDB,
∴∠FAE=∠CDB,
Rt△BDE中,∠CDB+∠B=90°,
∴∠FAE+∠B=90°,
∴∠AGB=90°,
∴AG⊥BD,即AF⊥BD.
23.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.
(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.
(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.
【分析】(1)根据遥望角的定义得到∠EBC=∠ABC,∠ECD=∠ACD,根据三角形的外角性质计算,得到答案;
(2)延长BC到点T,根据圆内接四边形的性质得到∠FDC+∠FBC=180°,得到∠ABF=∠FBC,根据圆周角定理得到∠ACD=∠BFD,进而得到∠ACD=∠DCT,根据遥望角的定义证明结论.
【解答】解:(1)∵∠E是△ABC中∠A的遥望角,
∴∠EBC=∠ABC,∠ECD=∠ACD,
∴∠E=∠ECD﹣∠EBD=(∠ACD﹣∠ABC)=∠A,
∵∠A=α,
∴∠E=α;
(2)如图2,延长BC到点T,
∵四边形FBCD内接于⊙O,
∴∠FDC+∠FBC=180°,
∵∠FDE+∠FDC=180°,
∴∠FDE=∠FBC,
∵DF平分∠ADE,
∴∠ADF=∠FDE,
∵∠ADF=∠ABF,
∴∠ABF=∠FBC,
∴BE是∠ABC的平分线,
∵=,
∴∠ACD=∠BFD,
∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,
∴∠DCT=∠BFD,
∴∠ACD=∠DCT,
∴CE是△ABC的外角平分线,
∴∠BEC是△ABC中∠BAC的遥望角.
24.如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径;
(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.
【分析】(1)根据垂径定理和勾股定理求解;
(2)连接ON,OB,根据勾股定理即可得到结论.
【解答】解:(1)如图,连接ON,OB.
∵OC⊥AB,
∴D为AB中点,
∵AB=12m,
∴BD=AB=6m.
又∵CD=4m,
设OB=OC=ON=r,则OD=(r﹣4)m.
在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,
解得r=6.5.
(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,
∴CE=4﹣3.4=0.6(m),
∴OE=r﹣CE=6.5﹣0.6=5.9(m),
在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,
∴EN=(m).
∴MN=2EN=2×≈5.4m>5m.
∴此货船能顺利通过这座拱桥.
25.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.
(1)求证:AE=ED;
(2)若AB=6,∠ABC=30°,求图中阴影部分的面积.
【分析】(1)根据圆周角定理得到∠ADB=90°,根据平行线的性质得到∠AEO=∠ADB=90°,即OC⊥AD,于是得到结论;
(2)连接CD,OD,根据等腰三角形的性质得到∠OCB=∠ABC=30°,即可求得∠AOC=∠OCB+∠ABC=60°,根据垂径定理得出=,从而得出∠COD=∠AOC=60°,求得∠AOD=120°,根据扇形和三角形的面积公式即可得到结论.
【解答】(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∵OC∥BD,
∴∠AEO=∠ADB=90°,即OC⊥AD,
又∵OC为半径,
∴AE=ED,
(2)解:连接CD,OD,
∵OC=OB,
∴∠OCB=∠ABC=30°,
∴∠AOC=∠OCB+∠ABC=60°,
∵OC⊥AD,
∴=,
∴∠COD=∠AOC=60°,
∴∠AOD=120°,
∵AB=6,
∴BD=3,AD=3,
∵OA=OB,AE=ED,
∴OE==,
∴S阴影=S扇形AOD﹣S△AOD=﹣×=3π﹣.
相关试卷
这是一份初中数学浙教版九年级上册第3章 圆的基本性质综合与测试复习练习题,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份期末练习试卷2021-2022学年浙教版九年级上册数学(word版 含答案),共23页。试卷主要包含了下列事件是必然事件的是,下列有关二次函数y=3,把抛物线y=3等内容,欢迎下载使用。
这是一份期末模拟试卷 2021-2022学年浙教版九年级上册数学(word版 含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。