备战2022年高考数学压轴题专题3.5 参数范围与最值不等建解不宜迟
展开
这是一份备战2022年高考数学压轴题专题3.5 参数范围与最值不等建解不宜迟,共19页。
【题型综述】
参数范围与最值问题解题策略一般有以下几种:
(1) 几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质构造含参数的不等式,通过解不等式解出参数的范围和最值.
(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;
②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;
③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;
④利用基本不等式求出参数的取值范围;
⑤利用函数的值域的求法,确定参数的取值范围.
参数的范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数的不等式,通过解不等式求出参数的范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.
【典例指引】
类型一 参数范围问题
例1 【2016高考江苏卷】(本小题满分16分)如图,在平面直角坐标系中,已知以为圆心的圆及其上一点.
(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;
(2)设平行于的直线与圆相交于两点,且,求直线的方程;
(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。
【解析】圆M的标准方程为,所以圆心M(6,7),半径为5,.
(1)由圆心在直线x=6上,可设.因为N与x轴相切,与圆M外切,
所以,于是圆N的半径为,从而,解得.
因此,圆N的标准方程为.
(2)因为直线l||OA,所以直线l的斜率为.
设直线l的方程为y=2x+m,即2x-y+m=0,
则圆心M到直线l的距离
因为
而
所以,解得m=5或m=-15.
故直线l的方程为2x-y+5=0或2x-y-15=0.
所以 解得.
因此,实数t的取值范围是.
类型二 方程中参数范围问题
例2.【2016高考江苏卷】(本小题满分10分)
如图,在平面直角坐标系xOy中,已知直线,抛物线
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为;
②求p的取值范围.
【解析】(1)抛物线的焦点为
由点在直线上,得,即
所以抛物线C的方程为
因为P 和Q是抛物线C上的相异两点,所以
从而,化简得.
方程(*)的两根为,从而
因为在直线上,所以
因此,线段PQ的中点坐标为
②因为在直线上
所以,即
由①知,于是,所以
因此的取值范围为
类型三 斜率范围问题
例3【2016高考天津理数】(本小题满分14分)设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.
【解析】(1)设,由,即,可得,又,所以,因此,所以椭圆的方程为.
由(Ⅰ)知,,设,有,.由,得,所以,解得.因此直线的方程为.
设,由方程组消去,解得.在中,,即,化简得,即,解得或.
所以,直线的斜率的取值范围为.
类型四 离心率的范围问题
例4.【2016高考浙江理数】(本题满分15分)如图,设椭圆(a>1).
(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值
范围.
【解析】(1)设直线被椭圆截得的线段为,由得
,
故,.
因此.
由于,,得
,
因此, ①
因为①式关于,的方程有解的充要条件是
,所以.
因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,
由得,所求离心率的取值范围为.
【扩展链接】
1.若椭圆方程为,半焦距为,焦点,设
过的直线 的倾斜角为,交椭圆于A、B两点,则有:①
;②
若椭圆方程为,半焦距为,焦点,设
过的直线 的倾斜角为,交椭圆于A、B两点,则有:①
;②
同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距)
结论:椭圆过焦点弦长公式:
2.过椭圆左焦点的焦点弦为,则;过右焦
点的弦.
3. 抛物线与直线相交于且该直线与轴交于点,则有.
4.设为过抛物线焦点的弦,,直线的倾斜角为,则
①.
②.
③.
④.;
⑤.;
⑥.;
【同步训练】
1.已知椭圆的右焦点为,离心率为.
(1)若,求椭圆的方程;
(2)设直线与椭圆相交于两点,分别为线段的中点,若坐标原点在以为直径的圆上,且,求的取值范围.
【思路点拨】(1)结合所给的数据计算可得,,所以椭圆的方程为.
(2)联立直线与椭圆的方程,集合韦达定理和平面向量数量积的坐标运算法则可得 ,结合离心率的范围可知则的取值范围是.
【详细解析】(1)由题意得,∴.
又因为,∴.
所以椭圆的方程为.
(2)由 得.
设.所以,
2.在 中,顶点 所对三边分别是 已知 ,且 成等差数列.
(1)求顶点 的轨迹方程;
(2) 设顶点A的轨迹与直线 相交于不同的两点 ,如果存在过点的直线,使得点 关于对称,求实数 的取值范围
【思路点拨】(1 ) 由 成等差数列,可得 ;结合椭圆的定义可求得 的轨迹方程为;(2)将 与椭圆方程联立,判别式大于得 .根据点关于直线 对称,得.讨论 , 两种情况即可求出 的取值范围.
【详细解析】(1)由题知 得 ,即 (定值).
由椭圆定义知,顶点 的轨迹是以 为焦点的椭圆(除去左右顶点),
且其长半轴长为 ,半焦距为 ,于是短半轴长为 .
∴ 顶点 的轨迹方程为 .
(2)由
消去整理得,
∴ ,整理得: …①.
令 ,则 .
设 的中点 ,则 .
i)当 时,由题知, .
ii)当 时,直线方程为 ,
3.已知A,B,C是椭圆C: (a>b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆的中心,且·=0,||=2||
(1)求椭圆C的方程;
(2)过点(0,t)的直线l(斜率存在)与椭圆C交于P,Q两点,设D为椭圆C与y轴负半轴的交点,且||=||,求实数t的取值范围.
【思路点拨】(1)根据点的坐标求出a,然后根据求出b,即可求出椭圆方程。(2)根据题意设出直线方程,与(1)中椭圆方程联立,设运用违达定理运算,求出t的取值范围。
【详细解析】(1)由A的坐标为(2,0),所以, ,知OC=AC,所以C(),代入椭圆方程,得b=2,所以椭圆标准方程: 。
(2)显然,当直线k=0,时满足,此时-2
相关试卷
这是一份高考数学压轴难题归纳总结培优专题3.5 参数范围与最值不等建解不宜迟 (含解析),共19页。
这是一份备战2022年高考数学压轴题专题3.4 目标范围与最值函数处理最相宜,共23页。
这是一份备战2022年高考数学压轴题专题2.9 已知不等恒成立讨论单调或最值,共24页。