新高考数学一轮复习教师用书:第二章 8 第8讲 函数与方程学案
展开
这是一份新高考数学一轮复习教师用书:第二章 8 第8讲 函数与方程学案,共13页。
第8讲 函数与方程
1.函数的零点
(1)函数零点的定义:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.
(2)三个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
2.函数零点的判定
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.我们把这一结论称为函数零点存在性定理.
3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+
bx+c(a>0)
的图象
与x轴
的交点
(x1,0),(x2,0)
(x1,0)
无交点
零点个数
两个
一个
零个
[疑误辨析]
判断正误(正确的打“√”,错误的打“×”)
(1)函数的零点就是函数的图象与x轴的交点.( )
(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)0,当x0,解得-8
相关学案
这是一份新高考数学一轮复习学案第3章第8讲 函数与方程(含解析),共12页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第8讲 函数与方程学案,共13页。
这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第8讲 函数与方程学案,共13页。学案主要包含了知识梳理,习题改编,利用图形求解不等式中的参数范围,利用图形研究零点问题等内容,欢迎下载使用。