新高考数学一轮复习教师用书:第二章 1 第1讲 函数及其表示学案
展开
知识点
最新考纲
函数及其表示
了解函数、映射的概念.
了解函数的定义域、值域及三种表示法(解析法、图象法和列表法).
了解简单的分段函数,会用分段函数解决简单的问题.
函数的基本性质
理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性.
理解函数的最大(小)值的含义,会求简单函数的最大(小)值.
指数函数
了解指数幂的含义,掌握有理指数幂的运算.
理解指数函数的概念,掌握指数函数的图象、性质及应用.
对数函数
理解对数的概念,掌握对数的运算,会用换底公式.
理解对数函数的概念,掌握对数函数的图象、性质及应用.
幂函数
了解幂函数的概念.
掌握幂函数y=x,y=x2,y=x3,y=,y=x的图象和性质.
函数与方程
了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法.
函数模型及其应用
了解指数函数、对数函数以及幂函数的变化特征.
能将一些简单的实际问题转化为相应的函数问题,并给予解决.
第1讲 函数及其表示
1.函数与映射的概念
函数
映射
两集合
A、B
设A,B是两个非空的数集
设A,B是两个非空的集合
对应关系
f:A→B
如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应
如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应
名称
称f:A→B为从集合A到集合B的一个函数
称对应f:A→B为从集合A到集合B的一个映射
记法
y=f(x)(x∈A)
对应f:A→B是一个映射
2.函数的有关概念
(1)函数的定义域、值域
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.
(2)函数的三要素:定义域、值域和对应关系.
(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法
表示函数的常用方法有:解析法、图象法、列表法.
3.分段函数
若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
[疑误辨析]
判断正误(正确的打“√”,错误的打“×”)
(1)函数y=f(x)的图象与直线x=a最多有2个交点.( )
(2)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.( )
(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )
(4)若A=R,B={x|x>0},f:x→y=|x|,则对应关系f是从A到B的映射.( )
(5)分段函数是由两个或几个函数组成的.( )
(6)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( )
答案:(1)× (2)√ (3)× (4)× (5)× (6)√
[教材衍化]
1.(必修1P18例2改编)下列函数中,与函数y=x+1是相等函数的是( )
A.y=()2 B.y=+1
C.y=+1 D.y=+1
解析:选B.对于A,函数y=()2的定义域为{x|x≥-1},与函数y=x+1的定义域不同,不是相等函数;对于B,定义域和对应关系都相同,是相等函数;对于C,函数y=+1的定义域为{x|x≠0},与函数y=x+1的定义域不同,不是相等函数;对于D,定义域相同,但对应关系不同,不是相等函数,故选B.
2.(必修1P25B组T1改编)函数y=f(x)的图象如图所示,那么f(x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.
答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]
3.(必修1P19T1(2)改编)函数y=·的定义域是________.
解析:⇒x≥2.
答案:[2,+∞)
[易错纠偏]
(1)对函数概念理解不透彻;
(2)换元法求解析式,反解忽视范围.
1.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f中不是函数的是________.(填序号)
①f:x→y=x;②f:x→y=x;③f:x→y=x;④f:x→y=.
解析:对于③,因为当x=4时,y=×4=∉Q,所以③不是函数.
答案:③
2.已知f()=x-1,则f(x)=________.
解析:令t=,则t≥0,x=t2,所以f(t)=t2-1(t≥0),即f(x)=x2-1(x≥0).
答案:x2-1(x≥0)
函数的定义域
(1)(2020·杭州学军中学月考)函数f(x)=的定义域为________.
(2)若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域为________.
(3)若函数f(x)=的定义域为R,则a的取值范围为________.
【解析】 (1)要使函数f(x)有意义,必须使
解得x<-.
所以函数f(x)的定义域为.
(2)由得0≤x<1,即定义域是[0,1).
(3)因为函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥20,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.
【答案】 (1) (2)[0,1) (3)[-1,0]
(变条件)若将本例(2)中“函数y=f(x)”改为“函数y=f(x+1)”,其他条件不变,如何求解?
解:由函数y=f(x+1)的定义域为[0,2],
得函数y=f(x)的定义域为[1,3],
令得≤x≤且x≠1.
所以g(x)的定义域为∪.
函数定义域的求解策略
(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.
(2)求抽象函数的定义域:①若y=f(x)的定义域为(a,b),则解不等式a<g(x)<b即可求出y=f(g(x))的定义域;②若y=f(g(x))的定义域为(a,b),则求出g(x)在(a,b)上的值域即得y=f(x)的定义域.
(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解.
[提醒] (1)求函数定义域时,对函数解析式先不要化简;
(2)求出定义域后,一定要将其写成集合或区间的形式.
1.(2020·浙江新高考优化卷)函数f(x)=+lg(-3x2+5x+2)的定义域是( )
A. B.
C. D.
解析:选B.依题意可得,要使函数有意义,则有
,解得-
A.[0,1] B.[0,1)
C.(-∞,1] D.(-∞,1)
解析:选C.因为由x-x2≥0得0≤x≤1,
所以A={x|0≤x≤1}.
由1-x>0得x<1,
所以B={x|x<1},所以A∪B={x|x≤1}.
故选C.
3.若函数f(x)=的定义域为实数集,则实数m的取值范围是________.
解析:由题意可得mx2+mx+1≥0恒成立.
当m=0时,1≥0恒成立;
当m≠0时,则
解得0
答案:[0,4]
求函数的解析式
(1)已知f=x2+,求f(x)的解析式;
(2)已知f=lg x,求f(x)的解析式;
(3)已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1,求f(x);
(4)已知函数f(x)满足f(-x)+2f(x)=2x,求f(x)的解析式.
【解】 (1)(配凑法)由于f=x2+=-2,
所以f(x)=x2-2,x≥2或x≤-2,
故f(x)的解析式是f(x)=x2-2,x≥2或x≤-2.
(2)(换元法)令+1=t得x=,
代入得f(t)=lg ,又x>0,所以t>1,
故f(x)的解析式是f(x)=lg ,x>1.
(3)(待定系数法)设f(x)=ax2+bx+c(a≠0),
由f(0)=0,知c=0,f(x)=ax2+bx,
又由f(x+1)=f(x)+x+1,
得a(x+1)2+b(x+1)=ax2+bx+x+1,
即ax2+(2a+b)x+a+b=ax2+(b+1)x+1,
所以解得a=b=.
所以f(x)=x2+x,x∈R.
(4)(解方程组法)由f(-x)+2f(x)=2x,①
得f(x)+2f(-x)=2-x,②
①×2-②,得,3f(x)=2x+1-2-x.
即f(x)=.
所以f(x)的解析式是f(x)=,x∈R.
求函数解析式的4种方法
(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式.
(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.
(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.
(4)解方程组法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).
[提醒] 求解析式时要注意新元的取值范围.
1.(2020·杭州学军中学月考)已知f(+1)=x+2,则f(x)的解析式为f(x)=__________.
解析:法一:设t=+1,则x=(t-1)2(t≥1);
代入原式有f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1.故f(x)=x2-1(x≥1).
法二:因为x+2=()2+2+1-1=(+1)2-1,所以f(+1)=(+1)2-1(+1≥1),
即f(x)=x2-1(x≥1).
答案:x2-1(x≥1)
2.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2,则f(x)的解析式为f(x)=________.
解析:设f(x)=ax2+bx+c(a≠0),
则f′(x)=2ax+b=2x+2,
所以a=1,b=2,f(x)=x2+2x+c.
又因为方程f(x)=0有两个相等的实根,
所以Δ=4-4c=0,c=1,故f(x)=x2+2x+1.
答案:x2+2x+1
分段函数(高频考点)
分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题多为容易题或中档题.主要命题角度有:
(1)分段函数求值;
(2)已知函数值,求参数的值(或取值范围);
(3)与分段函数有关的方程、不等式问题.
角度一 分段函数求值
(2020·杭州萧山中学高三适应性考试)若函数f(x)=g(x)=x2,则f(8)=________;g[f(2)]=________;f=________.
【解析】 f(8)=log28=3,g[f(2)]=g(log22)=g(1)=1,f=f=f(-1)=f(1)=log21=0.
【答案】 3 1 0
角度二 已知函数值求参数的值(或取值范围)
(2020·瑞安市龙翔高中高三月考)设函数f(x)=,若f(f(a))=3,则a=________.
【解析】 函数f(x)=,若f(f(a))=3,当a≥1时,可得f(-2a2+1)=3,可得log2(2a2)=3,解得a=2.
当a<1时,可得f(log2(1-a))=3,log2(1-a)≥1时,可得-2(log2(1-a))2+1=3,解得a∈∅.
log2(1-a)<1时,可得log2(1-log2(1-a))=3,即1-log2(1-a)=8,log2(1-a)=-7,1-a=,可得a=.
综上得a的值为2或.
【答案】 2或
角度三 与分段函数有关的方程、不等式问题
(2020·镇海中学5月模拟)已知函数f(x)=则f(f(-2))=________,若f(x)≥2,则x的取值范围为________.
【解析】 由分段函数的表达式得f(-2)=-2=4-2=2,f(2)=0,故f(f(-2))=0.
若x≤-1,由f(x)≥2得-2≥2,得≥4,则2-x≥4,
得-x≥2,则x≤-2,此时x≤-2.
若x>-1,由f(x)≥2得(x-2)(|x|-1)≥2,
即x|x|-x-2|x|≥0,
若x≥0,得x2-3x≥0,则x≥3或x≤0,此时x≥3或x=0;
若-1<x<0,得-x2+x≥0,得x2-x≤0,得0≤x≤1,此时无解.
综上得x≥3或x=0或x≤-2.
【答案】 0 x≥3或x=0或x≤-2
(1)根据分段函数解析式,求函数值的解题思路
先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.
(2)已知分段函数的函数值,求参数值的解题思路
先假设所求的值在分段函数定义区间的各段上,构造关于参数的方程.然后求出相应自变量的值,切记要代入检验.
(3)已知分段函数的函数值满足的不等式,求自变量取值范围的解题思路
依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.
1.(2020·浙江教育评价高三第二次联考))设函数f(x)=,则f(f(4))=( )
A.2 B.3
C.5 D.6
解析:选C.f(f(4))=f(-31)=log2 32=5.故选C.
2.(2020·Z20联盟开学联考)已知函数f(x)=,若f(a)≤1,则实数a的取值范围是( )
A.(-∞,-4]∪[2,+∞) B.[-1,2]
C.[-4,0)∪(0,2] D.[-4,2]
解析:选D.f(a)≤1⇔或
解得-4≤a≤0或0
核心素养系列2 数学抽象——函数的新定义问题
以学习过的函数相关知识为基础,通过一类问题共同特征的“数学抽象”,引出新的概念,然后在快速理解的基础上,解决新问题.
在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f(x)的图象恰好经过n(n∈N*)个整点,则称函数f(x)为n阶整点函数.给出下列函数:
①f(x)=sin 2x; ②g(x)=x3;
③h(x)=; ④φ(x)=ln x.
其中是一阶整点函数的是( )
A.①②③④ B.①③④
C.①④ D.④
【解析】 对于函数f(x)=sin 2x,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D;
对于函数g(x)=x3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A;
对于函数h(x)=,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.
【答案】 C
本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f(x)的图象恰好经过1个整点,问题便迎刃而解.
1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( )
A.1个 B.2个
C.3个 D.4个
解析:选C.由x2+1=1得x=0,由x2+1=3得x=±,所以函数的定义域可以是{0,},{0,-},{0,,-},故值域为{1,3}的同族函数共有3个.
2.若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为“类偶函数”,则下列函数中为类偶函数的是( )
A.f(x)=cos x B.f(x)=sin x
C.f(x)=x2-2x D.f(x)=x3-2x
解析:选D.A中函数为偶函数,则在定义域内均满足f(x)=f(-x),不符合题意;B中,当x=kπ(k∈Z)时,满足f(x)=f(-x),不符合题意;C中,由f(x)=f(-x),得x2-2x=x2+2x,解得x=0,不符合题意;D中,由f(x)=f(-x),得x3-2x=-x3+2x,解得x=0或x=±,满足题意,故选D.
[基础题组练]
1.函数f(x)=+ln(3x-x2)的定义域是( )
A.(2,+∞) B.(3,+∞)
C.(2,3) D.(2,3)∪(3,+∞)
解析:选C.由解得2<x<3,则该函数的定义域为(2,3),故选C.
2.(2020·嘉兴一模)已知a为实数,设函数f(x)=则f(2a+2)的值为( )
A.2a B.a
C.2 D.a或2
解析:选B.因为函数f(x)=
所以f(2a+2)=log2(2a+2-2)=a,故选B.
3.下列哪个函数与y=x相等( )
A.y= B.y=2log2x
C.y= D.y=()3
解析:选D.y=x的定义域为R,而y=的定义域为{x|x∈R且x≠0},y=2log2x的定义域为{x|x∈R,且x>0},排除A、B;y==|x|的定义域为x∈R,对应关系与y=x的对应关系不同,排除C;而y=()3=x,定义域和对应关系与y=x均相同,故选D.
4.(2020·杭州七校联考)已知函数f(x)=x3+cos+1,若f(a)=2,则f(-a)的值为( )
A.3 B.0
C.-1 D.-2
解析:选B.因为函数f(x)=x3+cos+1,
所以f(x)=x3+sin x+1,
因为f(a)=2,所以f(a)=a3+sin a+1=2,
所以a3+sin a=1,所以f(-a)=(-a)3+sin(-a)+1=-1+1=0.故选B.
5.已知a,b为两个不相等的实数,集合M={a2-4a,-1},N={b2-4b+1,-2},f:x→x表示把M中的元素x映射到集合N中仍为x,则a+b等于( )
A.1 B.2
C.3 D.4
解析:选D.由已知可得M=N,
故⇒
所以a,b是方程x2-4x+2=0的两根,故a+b=4.
6.存在函数f(x)满足:对于任意x∈R都有( )
A.f(sin 2x)=sin x B.f(sin 2x)=x2+x
C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|
解析:选D.取特殊值法.
取x=0,,可得f(0)=0,1,这与函数的定义矛盾,
所以选项A错误;
取x=0,π,可得f(0)=0,π2+π,这与函数的定义矛盾,
所以选项B错误;
取x=1,-1,可得f(2)=2,0,这与函数的定义矛盾,
所以选项C错误;
取f(x)=,则对任意x∈R都有f(x2+2x)==|x+1|,故选项D正确.
7.已知f=,则f(x)的解析式为( )
A.f(x)= B.f(x)=-
C.f(x)= D.f(x)=-
解析:选C.令=t,则x=,所以f(t)==,故函数f(x)的解析式为f(x)=,故选C.
8.设函数f(x)=
则(a≠b)的值为( )
A.a B.b
C.a,b中较小的数 D.a,b中较大的数
解析:选C.若a-b>0,即a>b,则f(a-b)=-1,
则=[(a+b)-(a-b)]=b(a>b);
若a-b<0,即a<b,则f(a-b)=1,
则=[(a+b)+(a-b)]=a(a<b).综上,选C.
9.(2020·绍兴高三教学质量调研)设函数f(x)=,若f(f())=2,则实数n为( )
A.- B.-
C. D.
解析:选D.因为f()=2×+n=+n,当+n<1,即n<-时,f(f())=2(+n)+n=2,解得n=-,不符合题意;当+n≥1,即n≥-时,f(f())=log2(+n)=2,即+n=4,解得n=,故选D.
10.设f(x),g(x)都是定义在实数集上的函数,定义函数(f·g)(x):对任意的x∈R,(f·g)(x)=f(g(x)).若f(x)=g(x)=则( )
A.(f·f)(x)=f(x) B.(f·g)(x)=f(x)
C.(g·f)(x)=g(x) D.(g·g)(x)=g(x)
解析:选A.对于A,(f·f)(x)=f(f(x))=当x>0时,f(x)=x>0,(f·f)(x)=f(x)=x;当x<0时,f(x)=x2>0,(f·f)(x)=f(x)=x2;当x=0时,(f·f)(x)=f2(x)=0=02,因此对任意的x∈R,有(f·f)(x)=f(x),故A正确,选A.
11.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.
解析:由题图可知,当-1≤x<0时,f(x)=x+1;当0≤x≤2时,f(x)=-x,所以f(x)=
答案:f(x)=
12.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(1)=________.
解析:令x=1,得2f(1)-f(-1)=4,①
令x=-1,得2f(-1)-f(1)=-2,②
联立①②得f(1)=2.
答案:2
13.函数f(x),g(x)分别由下表给出.
x
1
2
3
x
1
2
3
f(x)
1
3
1
g(x)
3
2
1
则f(g(1))的值为________;满足f(g(x))>g(f(x))的x的值为________.
解析:因为g(1)=3,f(3)=1,所以f(g(1))=1.
当x=1时,f(g(1))=f(3)=1,g(f(1))=g(1)=3,不合题意.
当x=2时,f(g(2))=f(2)=3,g(f(2))=g(3)=1,符合题意.
当x=3时,f(g(3))=f(1)=1,g(f(3))=g(1)=3,不合题意.
答案:1 2
14.设函数f(x)=则使得f(x)≥1的自变量x的取值范围是________.
解析:f(x)≥1等价于或
由得x≤-2或0≤x<1.
由得1≤x≤10.
综上所述,x的取值范围是x≤-2或0≤x≤10.
答案:(-∞,-2]∪[0,10]
15.已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为________.
解析:当a>0时,1-a<1,1+a>1,此时f(1-a)=2(1-a)+a=2-a,f(1+a)=-(1+a)-2a=-1-3a.
由f(1-a)=f(1+a)得2-a=-1-3a,解得a=-.
不合题意,舍去.
当a<0时,1-a>1,1+a<1,
此时f(1-a)=-(1-a)-2a=-1-a,
f(1+a)=2(1+a)+a=2+3a,
由f(1-a)=f(1+a)得-1-a=2+3a,解得a=-.
综上可知,a的值为-.
答案:-
16.(2020·杭州市富阳二中高三(上)开学考试)已知函数f(x)=,则f(f(-2))=________,f(x)的最小值是________.
解析:由题意可得f(-2)=(-2)2=4,
所以f(f(-2))=f(4)=4+-6=-;
因为当x≤1时,f(x)=x2,
由二次函数可知当x=0时,函数取最小值0;
当x>1时,f(x)=x+-6,
由基本不等式可得f(x)=x+-6≥2-6
=2-6,
当且仅当x=即x=时取到等号,即此时函数取最小值2-6;
因为2-6<0,所以f(x)的最小值为2-6.
答案:- 2-6
17.已知函数f(x)=若a[f(a)-f(-a)]>0,则实数a的取值范围为________.
解析:易知a≠0.由题意得,当a>0时,则-a<0,故a[f(a)-f(-a)]=a(a2+a-3a)>0,化简可得a2-2a>0,解得a>2或a<0.又因为a>0,所以a>2.当a<0时,则-a>0,故a[f(a)-f(-a)]=a[-3a-(a2-a)]>0,化简可得a2+2a>0,解得a>0或a<-2,又因为a<0,所以a<-2.综上可得,实数a的取值范围为(-∞,-2)∪(2,+∞).
答案:(-∞,-2)∪(2,+∞)
[综合题组练]
1.设x∈R,定义符号函数sgn x=则( )
A.|x|=x|sgn x| B.|x|=xsgn|x|
C.|x|=|x|sgn x D.|x|=xsgn x
解析:选D.当x<0时,|x|=-x,x|sgn x|=x,x·sgn|x|=x,|x|sgn x=(-x)·(-1)=x,排除A,B,C,故选D.
2.(2020·宁波市九校期末联考)已知下列各式:①f(|x|+1)=x2+1;②f()=x;③f(x2-2x)=|x|;④f(|x|)=3x+3-x.其中存在函数f(x)对任意的x∈R都成立的序号为________.
解析:①f(|x|+1)=x2+1,由t=|x|+1(t≥1),可得|x|=t-1,则f(t)=(t-1)2+1,即有f(x)=(x-1)2+1对x∈R均成立;②f()=x,令t=(0<t≤1),x=± ,对0<t≤1,y=f(t)不能构成函数,故不成立;③f(x2-2x)=|x|,令t=x2-2x,若t<-1时,x∈∅;t≥-1,可得x=1±(t≥-1),y=f(t)不能构成函数;④f(|x|)=3x+3-x,当x≥0时,f(x)=3x+3-x;当x<0时,f(-x)=3x+3-x;将x换为-x可得f(x)=3x+3-x;故恒成立.综上可得①④符合条件.
答案:①④
3.设函数f(x)=且f(-2)=3,f(-1)=f(1).
(1)求f(x)的解析式;
(2)画出f(x)的图象.
解:(1)由f(-2)=3,f(-1)=f(1),得解得a=-1,b=1,
所以f(x)=
(2)f(x)的图象如图:
4.已知f(x)=x2-1,g(x)=
(1)求f(g(2))与g(f(2));
(2)求f(g(x))与g(f(x))的表达式.
解:(1)g(2)=1,f(g(2))=f(1)=0;f(2)=3,g(f(2))=g(3)=2.
(2)当x>0时,f(g(x))=f(x-1)=(x-1)2-1=x2-2x;
当x<0时,f(g(x))=f(2-x)=(2-x)2-1=x2-4x+3.
所以f(g(x))=
同理可得g(f(x))=
5.设计一个水渠,其横截面为等腰梯形(如图),要求满足条件AB+BC+CD=a(常数),∠ABC=120°,写出横截面的面积 y关于腰长x的函数,并求它的定义域和值域.
解:如图,因为AB+BC+CD=a,所以BC=EF=a-2x>0,
即0
y=(BC+AD)·BE=
=(2a-3x)x=-(3x2-2ax)
=-+a2,
故当x=时,y有最大值a2,它的定义域为,值域为.
6.已知函数f(x)对任意实数x均有f(x)=-2f(x+1),且f(x)在区间[0,1]上有表达式f(x)=x2.
(1)求f(-1),f(1.5);
(2)写出f(x)在区间[-2,2]上的表达式.
解:(1)由题意知f(-1)=-2f(-1+1)=-2f(0)=0,
f(1.5)=f(1+0.5)=-f(0.5)=-×=-.
(2)当x∈[0,1]时,f(x)=x2;
当x∈(1,2]时,x-1∈(0,1],f(x)=-f(x-1)=-(x-1)2;
当x∈[-1,0)时,x+1∈[0,1),
f(x)=-2f(x+1)=-2(x+1)2;
当x∈[-2,-1)时,x+1∈[-1,0),
f(x)=-2f(x+1)=-2×[-2(x+1+1)2]=4(x+2)2.
所以f(x)=.
新高考数学一轮复习学案第3章第1讲 函数及其表示(含解析): 这是一份新高考数学一轮复习学案第3章第1讲 函数及其表示(含解析),共16页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文: 这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文,共12页。
2022高考数学人教版(浙江专用)一轮总复习学案:第二章 第1讲 函数及其表示: 这是一份2022高考数学人教版(浙江专用)一轮总复习学案:第二章 第1讲 函数及其表示,共12页。