2021学年第三章 概率的进一步认识综合与测试同步达标检测题
展开
这是一份2021学年第三章 概率的进一步认识综合与测试同步达标检测题,共23页。
北师大版九年级数学上册第三章概率的进一步认识 同步测试
一.选择题
1. 在抛掷硬币的试验中,下列结论正确的是( ).
A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定
B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同
C.抛掷50000次硬币,可得“正面向上”的频率为0.5
D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518
2.下列生活中的事件,属于不可能事件的是( ).
A.3天内将下雨 B.打开电视,正在播新闻
C.买一张电影票,座位号是偶数号 D.没有水分,种子发芽
3. 为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有( )条..
A.150 B.200 C.350 D.10000
4.不透明的袋子中有3个白球和2个紅球,这些球除颜色外无其他差別,从袋子中随机摸出1个球,恰好是白球的概率( ).
A. B. C. D.
5.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是 .
A. B. C. D.
6.如图,在平行四边形ABCD中,E为BC的中点,BD,AE交于点O,若随机向平行四边形ABCD内投一粒米,则米粒落在图中△BOE的概率为( )选B.
A. B. C. D.
7.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是( ).
A.5 B.10 C.12 D.15
8.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( ).
A. B. C. D.
9.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( ).
A. B. C. D.
10.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( ).
A. B. C. D.
11.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( ).
A. B. C. D.
12.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是( ).
A.戊同学手里拿的两张卡片上的数字是8和9
B.丙同学手里拿的两张卡片上的数字是9和7
C.丁同学手里拿的两张卡片上的数字是3和4
D.甲同学手里拿的两张卡片上的数字是2和9.
二.填空题
13.表中记录了某种苹果树苗在一定条件下移植成活的情况:
移植的棵数n
200
500
800
2000
12000
成活的棵数m
187
446
730
1790
10836
成活的频率mn
0.935
0.892
0.913
0.895
0.903
由此估计这种苹果树苗移植成活的概率约为 .(精确到0.1)
14.一个不透明的袋子里装有除颜色不同其他都相同的红球、黄球和蓝球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为,则蓝球的个数是_____.
15.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是______.
16.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是 .
17.不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是_____.
18. 形状大小一样、背面相同的四张卡片,其中三张卡片正面分别标有数字“2”“3”“4”,小明和小亮各抽一张,前一个人随机抽一张记下数字后放回,混合均匀,后一个人再随机抽一张记下数字算一次,如果两人抽一次的数字之和是8的概率为,则第四张卡片正面标的数字是 .
三. 解答题
19.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;
(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.
20.“大千故里,文化内江”,我市某中学为传承大千艺术精神,征集学生书画作品.王老师从全校20个班中随机抽取了4个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.
(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品 件,并补全条形统计图;
(2)在扇形统计图中,表示班的扇形周心角的度数为 ;
(3)如果全校参展作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)
21.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球试验活动一共做了50次,统计结果如下表:
推测计算:由上述的摸球试验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
22.我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出以下两幅不完整的统计图表,请根据统计图表回答下列问题:
类别
频数
频率
不了解
10
m
了解很少
16
0.32
基本了解
b
很了解
4
n
合计
a
1
(1)根据以上信息可知:a= ,b= ,m= ,n= ;
(2)补全条形统计图;
(3)估计该校1000名初中学生中“基本了解”的人数约有 人;
(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.
23.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
24.某批彩色弹力球的质量检验结果如下表:
抽取的彩色弹力球数n
500
1000
1500
2000
2500
优等品频数m
471
946
1426
1898
2370
优等品频率
0.942
0.946
0.951
0.949
0.948
(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图;
(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(直接写出结果,精确到0.01)
(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率;
(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为,求取出了多少个黑球?
25.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少条? (2)估计这个鱼塘可产这种鱼多少千克?
北师大版九年级数学上册第三章概率的进一步认识 同步测试答案提示
一.选择题
1. 在抛掷硬币的试验中,下列结论正确的是( )选.
A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定
B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同
C.抛掷50000次硬币,可得“正面向上”的频率为0.5
D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.518
2.下列生活中的事件,属于不可能事件的是( )选D.
A.3天内将下雨 B.打开电视,正在播新闻
C.买一张电影票,座位号是偶数号 D.没有水分,种子发芽
4. 为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有( )条.
选D.
A.150 B.200 C.350 D.10000
4.不透明的袋子中有3个白球和2个紅球,这些球除颜色外无其他差別,从袋子中随机摸出1个球,恰好是白球的概率( )选C.
A. B. C. D.
5.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是 选.
A. B. C. D.
解:用列表法表示所有可能出现的情况如下:
共有9种可能出现的结果,其中两次都是白球的有4种,
,
6.如图,在平行四边形ABCD中,E为BC的中点,BD,AE交于点O,若随机向平行四边形ABCD内投一粒米,则米粒落在图中△BOE的概率为( )选B.
A. B. C. D.
解:∵E为BC的中点,
∴,
∴=,
∴S△BOE=S△AOB,S△AOB=S△ABD,
∴S△BOE=S△ABD=S▱ABCD,
∴米粒落在图中△BOE的概率为,
7.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是( )选A.
A.5 B.10 C.12 D.15
8.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( )选C.
A. B. C. D.
解:画树状图如下:
由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,
∴乙获胜的概率为,
9.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )选C.
A. B. C. D.
解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,
共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,
即甲和乙从同一节车厢上车的概率是,
10.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )选A.
A. B. C. D.
解:画树状图如图:
共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,
∴小李获胜的概率为;
11.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )选C.
A. B. C. D.
解:画树状图为:
∴P(选中甲、乙两位)=
12.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是( )选A.
A.戊同学手里拿的两张卡片上的数字是8和9
B.丙同学手里拿的两张卡片上的数字是9和7
C.丁同学手里拿的两张卡片上的数字是3和4
D.甲同学手里拿的两张卡片上的数字是2和9.
解:由题意得:是由中的两个不相同的数字相加所得的数,
只能是1与3的和,
即乙同学手里拿的两张卡片上的数字是1和3,
,
丁同学手里拿的两张卡片上的数字是2和5,
,
甲同学手里拿的两张卡片上的数字是4和7,
,
丙同学手里拿的两张卡片上的数字是6和10,
戊同学手里拿的两张卡片上的数字是8和9,
二.填空题
13.表中记录了某种苹果树苗在一定条件下移植成活的情况:
移植的棵数n
200
500
800
2000
12000
成活的棵数m
187
446
730
1790
10836
成活的频率mn
0.935
0.892
0.913
0.895
0.903
由此估计这种苹果树苗移植成活的概率约为 0.9 .(精确到0.1)
14.一个不透明的袋子里装有除颜色不同其他都相同的红球、黄球和蓝球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为,则蓝球的个数是___5____.
15.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是______.
解:锁用A,B表示,钥匙用A,B,C,D表示,
根据题意画树状图得:
∵共有8种等可能的结果,有2中情况符合条件,
∴一次就能打开锁的概率是.
16.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是 .
解:用树状图表示所有可能出现的结果有:
∴能让灯泡发光的概率:P=,
17.不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是_____.
解:列表如图所示:
黑
白
白
黑
(黑,黑)
(白,黑)
(白,黑)
白
(黑,白)
(白,白)
(白,白)
白
(黑,白)
(白,白)
(白,白)
由上表可知,所有等可能的情况共有9种,
其中两次摸出的球都是白球的情况共有4种,
∴两次摸出的球都是白球的概率,
18. 形状大小一样、背面相同的四张卡片,其中三张卡片正面分别标有数字“2”“3”“4”,小明和小亮各抽一张,前一个人随机抽一张记下数字后放回,混合均匀,后一个人再随机抽一张记下数字算一次,如果两人抽一次的数字之和是8的概率为,则第四张卡片正面标的数字是5或6.
四. 解答题
19.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;
(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.
解:(1)四张牌为:2,3,3,6,从中抽取一张,共有四种等可能结果,抽到牌面数字是3的有两种,
∴;
(2)解:列表如下:
第二次
第一次
2
3
3
6
2
3
3
6
由上表可知,共有12种等可能的结果,其中牌面数字恰好相同的结果有2种,
∴.
20.“大千故里,文化内江”,我市某中学为传承大千艺术精神,征集学生书画作品.王老师从全校20个班中随机抽取了4个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.
(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品 件,并补全条形统计图;
(2)在扇形统计图中,表示班的扇形周心角的度数为 ;
(3)如果全校参展作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)
解:(1)王老师采取的调查方式是抽样调查,
,
所以王老师所调查的4个班共征集到作品24件,
班的作品数为(件),
条形统计图为:
(2)在扇形统计图中,表示班的扇形周心角;
故答案为抽样调查;6;150°;
(3)画树状图为:
共有12种等可能的结果数,其中恰好抽中一男一女的结果数为6,
所以恰好抽中一男一女的概率.
21.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球试验活动一共做了50次,统计结果如下表:
推测计算:由上述的摸球试验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?
解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,
∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,
答:红球占40%,黄球占60%.
(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,
∴总球数为8÷=100,∴红球数为100×40%=40.
答:盒中有红球40个.
22.我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出以下两幅不完整的统计图表,请根据统计图表回答下列问题:
类别
频数
频率
不了解
10
m
了解很少
16
0.32
基本了解
b
很了解
4
n
合计
a
1
(1)根据以上信息可知:a= ,b= ,m= ,n= ;
(2)补全条形统计图;
(3)估计该校1000名初中学生中“基本了解”的人数约有 人;
(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.
解:(1)∵16÷0.32=50(人)
∴a=50,
b=50-(10-16-4)=20,
m=10÷50=0.2,
n=4÷50= 0.08,
故答案为:50,20,0.2,0.08;
(2)补全条形统计图如下图:
(3)该校1000名初中学生中“基本了解”的人数约有400人,
故答案为:400;
(4)记4名学生中3名男生分,一名女生为B,
A1
A2
A3
B
A1
(A1,A2)
(A1,A3)
(A1,B)
A2
(A2,A1)
(A2,A3)
(A2,B)
A3
(A3,A1)
(A3,A2)
(A3,B)
B
(B,A1)
(B,A2)
(B,A3)
从4人中任取两人的所有机会均等结果共有12种
抽到两名学生均为男生包含:A1A2,A1A3,A2A1,A2A3,A3A1,A3A2,共6种等可能结果,
∴P(抽到两名学生均为男生)=
抽到一男一女包含:A1B,A2B,A3B ,BA1, BA2,BA3 共六种等可能结果
∴P(抽到一男一女)=
故抽到两名学生均为男生和抽到一男一女的概率相同
23.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,
∴估计摸到红球的概率为0.75,
设白球有个,依题意得
解得,.
经检验:是原方程的解,且符合题意,
所以箱子里可能有1个白球;
(2)列表如下:
红
红
红
白
红
(红,红)
(红,红)
(红,红)
(红,白)
红
(红,红)
(红,红)
(红,红)
(红,白)
红
(红,红)
(红,红)
(红,红)
(红,白)
白
(白,红)
(白,红)
(白,红)
(白,白)
或画树状图如下:
∵一共有16种等可能的结果,两次摸出的小球颜色恰好不同的有:
(红,白)、(红,白)、(红,白)、(白,红)、(白,红)、(白,红)共6种.
∴两次摸出的小球恰好颜色不同的概率.
24.某批彩色弹力球的质量检验结果如下表:
抽取的彩色弹力球数n
500
1000
1500
2000
2500
优等品频数m
471
946
1426
1898
2370
优等品频率
0.942
0.946
0.951
0.949
0.948
(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图;
(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(直接写出结果,精确到0.01)
(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率;
(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为,求取出了多少个黑球?
解:(1)如图 (2)0.95 (3) (4)设取出了x个黑球,则放入了x个黄球,则=,解得x=5.答:取出了5个黑球
25.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少条? (2)估计这个鱼塘可产这种鱼多少千克?
相关试卷
这是一份九年级上册第五章 投影与视图2 视图精品达标测试,共10页。试卷主要包含了5米,宽为如图所示AB的长,等内容,欢迎下载使用。
这是一份北师大版九年级上册第三章 概率的进一步认识综合与测试单元测试巩固练习,共7页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份初中数学北师大版九年级上册第三章 概率的进一步认识综合与测试课堂检测,共5页。试卷主要包含了 选择题, 填空题, 解答题等内容,欢迎下载使用。