初中数学浙教版九年级上册4.5 相似三角形的性质及应用综合训练题
展开
这是一份初中数学浙教版九年级上册4.5 相似三角形的性质及应用综合训练题,共8页。试卷主要包含了下面两个三角形一定相似的是,下列两个图形,下列命题是真命题的是,如图,身高为1等内容,欢迎下载使用。
2021年浙教版数学九年级上册4.5《相似三角形的性质及应用》同步练习卷一、选择题1.下面两个三角形一定相似的是( )A.两个等腰三角形B.两个直角三角形C.两个钝角三角形D.两个等边三角形2.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有( )A.2组 B.3组 C.4组 D.5组3.如图,△ABC是面积为18cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( ) A.4cm2 B.6cm2 C.8cm2 D.10cm24.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线.若∠ABE=∠C,AE:ED=2:1,则△BDE与△ABC的面积比为何?( ) A.1:6 B.1:9 C.2:13 D.2:155.如图,在6×6的正方形网格中,连接两格点A,B,线段AB与网格线的交点为M,N,则AM:MN:NB为( )A.3:5:4 B.1:3:2 C.1:4:2 D.3:6:56.如图,是一种雨伞的轴截面图,伞骨AB=AC,支撑杆OE=OF=40 cm,当点O沿AD滑动时,雨伞开闭.若AB=3AE,AD=3AO,此时B,D两点间的距离为( )A.60 cm B.80 cm C.100 cm D.120 cm7.一个三角形支架三条边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm,120cm的两根木条,要求以其中一根为一边,从另一根上截下两段作为另两边(允许有余料),则不同的截法有( )A.一种 B.两种 C.三种 D.四种8.下列命题是真命题的是( )A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3 B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9 C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3 D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C处时,她的影子正好与旗杆的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )A.6.4米 B.7米 C.8米 D.9米 10.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为( ) A.2.4m B.24m C.0.6m D.6m二、填空题11.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为 .12.如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度为 .13.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则AH:CH的值为 .14.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是 米.15.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120 m,DC=60 m,EC=50 m,求得河宽AB= m.16.如图,路灯点O到地面的垂直距离为线段OP的长.小明站在路灯下点A处,AP=4米,他的身高AB为1.6米,同学们测得他在该路灯下的影长AC为2米,路灯到地面的距离________米.三、解答题17.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,求CD的长. 18.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)问:△BDE与△BAC相似吗?(2)已知AC=6,BC=8,求线段AD的长度. 19.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里? 20.如图,在△ABC中,AB=AC,点D、E分别在BC、AC上,且DC=DE.(1)求证:△ABC∽△DEC;(2)若AB=5,AE=1,DE=3,求BC的长. 21.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.
参考答案1.答案为:D2.答案为:A3.答案为:B4.答案为:D5.答案为:B. 6.答案为:D7.答案为:B8.答案为:B9.答案为:C10.答案为:D.11.答案为:3.12.答案为4.13.答案为:.14.答案为:1.92.,15.答案为:10016.答案为:10.17.解:∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠APB=∠PAC+∠C,∠PDC=∠PAC+∠APD,∵∠APD=60°,∴∠APB=∠PAC+60°,∠PDC=∠PAC+60°,∴∠APB=∠PDC,又∵∠B=∠C=60°,∴△ABP∽△PCD,∴,即,∴CD=.18.解:(1)相似.理由如下:∵∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理,得AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB-AE=10-6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2.解得:AD=319.解:∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴=.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴=, ∴FH=1.05里.20.(1)证明:∵AB=AC,∴∠B=∠C,∵DC=DE,∴∠DEC=∠C,∴∠DEC=∠B,∵∠C=∠C,∴△ABC∽△DEC;(2)解:∵AB=AC=5,AE=1,∴CE=AC﹣AE=4,∵△ABC∽△DEC,∴,即=.解得:BC=.21.解:由题意可得:△DEF∽△DCA,
则,
∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,
∴,解得:AC=10,
故AB=AC+BC=10+1.5=11.5(m),
答:旗杆的高度为11.5m.
相关试卷
这是一份浙教版九年级上册4.5 相似三角形的性质及应用课时训练,共10页。
这是一份九年级上册4.5 相似三角形的性质及应用精品巩固练习,共19页。
这是一份浙教版九年级上册4.5 相似三角形的性质及应用课堂检测,共26页。试卷主要包含了小明想利用太阳光测量楼高等内容,欢迎下载使用。