所属成套资源:语文版-中职数学基础模块上册同步课件PPT
函数的实际应用举例PPT课件免费下载
展开
语文版(中职)高中数学基础模块上册课文《函数的实际应用举例》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。
§3.5函数的实际应用一、【新课导入】(一)、学法指导 函数是描述客观世界变化规律的基本数学模型,研究变量之间依赖关系的有效工具,利用函数模型可以处理生产、生活中的许多实际问题在学习中要尽量做到:(1)自主或小组合作预习教材P58,P60的内容;(2)本学时的重点是培养应用函数知识分析、解决问题的能力;难点是根据图表信息建立函数关系式。(3)学习时要正确理解题意,善于转化问题,建立常规的数学模型进行分析,培养转化思想和数形结合的能力.
【探究1】研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:
(1)上表反映了哪两个变量之间的函数关系?请指出其中的自变量,因变量及函数的定义域和值域.(2)当氮肥的施用量是101kg/hm2时,土豆的产量是多少?如果不施用氮肥呢?(3)根据表格中的数据,说明氮肥的施用量为多少比较合适?(4)简要说明氮肥的施用量对土豆的影响.
答案:(1)上表反映了土豆的产量(单位:t/hm2)和氮肥的施用量(单位:kg/hm2)两个变量之间的函数关系.氮肥的施用量(单位:kg/hm2)是自变量,土豆的产量(单位:t/hm2)是因变量,函数的定义域是[0,471]和值域[15.2,43.5].(2)当氮肥的施用量是101kg/hm2时,土豆的产量是32.3 t/hm2 .不施用氮肥的产量为15.2 t/hm2 .(3)根据表格中的数据,说明氮肥的施用量为336 kg/hm2 .(4)土豆的产量先随着氮肥施用量的增加而增加,当氮肥施用量为336 kg/hm2时土豆的产量达到一个最大值43.5 t/hm2后,土豆的产量又随着氮肥施用量的减少而减少.
【探究2】一辆客车在运营过程中会与很多“数量”发生关系,比如车辆行驶的速度、时间、路程,耗费的油量,乘客的数量,乘车的票价,车主收取的票额,车辆行驶过程中缴纳的过路费,加油的数量、费用,加油站储油罐的体积、储油罐中的油量,等等. 请你寻找上述数量之间可能存在的函数关系,选择适当的方法表示它们,并与同伴交流.二、【课程的主要内容】
2.知识链接: 图表信息题是通过图象、图形或表格等形式给出信息的一种题型.主要有: (1)函数类图表信息题:函数图象能反映函数定义域、值域、单调性、奇偶性(对称性)、特殊点(交点、边界点、最值点)等性态,在解答时应从这些方面加以分析,充分应用图象信息,并注意与方程、不等式联系起来正确求解. (2)非函数类图形信息题:图形具有多样性直观化的特征,图形信息题是一类极富思考性、挑战性和趣味性的问题.充分挖掘图形内涵,全方位审视图形,全面掌握图形所提供的信息,是解决此类图形信息题的关键. (3)表格信息题:表格能集中给出解题信息,简洁明了.理解表中内容,根据数据特征找出数量之间的规律,进行计算或推理,是解表格信息题的关键. (4)条形图形信息题:随着新教材增加了《概率统计》,条形图形在问题中出现的机会也增多了.条形图形能直观反映各种数据信息的统计,具有可比较性、规律性.理解图形内容,找出变化趋势和规律,是解答条形图形信息题的关键.
3.拓展练习 例 1 一辆汽车从甲地出发驶往乙地,稍事休息后又返回甲地.下图表示了该车的行驶过程.其中,x表示车辆的行驶时间,y表示车辆与甲地之间的距离.根据图象提供的信息回答下列问题:(1)乙地距离甲地多远?该车从甲地到乙地花了多少时间?(2)图中的AB段表示了什么信息?(3)该车从甲地驶往乙地的速度与从乙地返回甲地的速度相比,哪个更快?
答案:由题目给出的信息和图象可知,OA段表示该车从甲地驶往乙地的过程,而线段BC表示该车从乙地返回甲地的过程.所以:(1)点A的纵坐标200(km)即为甲地到乙地的距离,它的横坐标2(h)即为车辆行驶的时间.即甲地据乙地200km,该车从甲地到乙地花了2h.(2)图中的A,B两点的纵坐标相同,结合题目已知信息可知:该车在乙地停了1h.(3)点C的横坐标5.5表示车辆从甲地出发,到达乙地后又回到甲地共花了5.5h.结合(1)、(2)的结果可知,从乙地返回甲地共花了5.5-2-2=2.5(h).因此,从甲地驶往乙地的速度更快,
例 2 如下图是某种新药在实验药效时得到每毫升血液中含药量(即药效)y(μ g / m L)随着服药后时间x(h)变化的图象.根据图象提供的信息回答下列问题:(1)服药后药效的上升速度与衰减速度哪个大?(2)服药后什么时间药效最大?(3)此药的效果最长可以保持大约多少时间?
答案:(1)由此图象可知,在折线的上升过程中,平均每小时上升量为7,而在折线的下降过程中,平均每小时下降量为7/5,所以药效的上升速度大于衰减速度.(2)由图象可知,折线上点的坐标在x=1时所对应的y值最大.所以服药后1h药效最大.(3)有图象可知,除原点外折线与x轴交点的横坐标约为6.2,所以,此药的效果最长可以保持约6.2小时.
4.当堂训练:(1)幸福村村办工厂今年前五个月生产某种产品的总量c(件)关于时间t(月)的函数图象如图3所示,则该厂对这种产品来说( ) A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少; B . 1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平; C .1月至3月每月生产总量逐月增加,4、5两月均停止生产; D .1月至3月每月生产总量不变,4、5两月均停止生产.
(2)某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时投入的成本与印数间的相应数据如表:
①经过对上表中数据的探究,发现这种读物的投入y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出的x取值范围).②如果出版社投入成本48000元,那么能印该读物多少册?
(一)学法指导 (1)自主或小组合作预习教材P59的内容 (2)本节课的重点是分段函数的概念;难点是分段函数的表示及其图象; (3)本节内容的学习要善用分类思想,学会把定义域分成几段,在每一段用不同的解析式表示函数;同时要注意联系实际,结合生活实例构建数学模型进行分析,体现数学源于生活,又服务于生活,以此感受到数学就在我们身边.
(二)课堂探究 1.探究问题 【探究】某市为了增强居民的节水意识,规定每户居民每月用水若不超 过5吨,按1元/吨收费,若超过5吨不超过10吨,则全部用水以2元/吨收费, 若超过10吨,则全部用水以3元/吨收费现用x(吨)表示某户居民的月 用水量,y(元)表示该户居民应交水费, (1)试写出y与x之间的函数关系,并作出它的函数图象; (2)若该用户某月用了12.5吨水,则应付多少元水费?
2.知识链接: (1)分段函数的概念:若在函数的定义域中,对于自变量的不同取值范围,以含有x的不同式子或常数来表示对应法则,则把这种函数叫做分段函数.(2)分段函数是一个函数,而不是几个函数。为更好地理解分段函数,常采用作出函数图象的方法,以增强其直观性.(3) 求分段函数的函数值时,首先要确定自变量所在范围,再根据范围决定使用哪一段函数表达式计算函数值.
答案:(1) f(-2)=-2+1=-1, f(2)=2-1=1,f[f(-1)]=1. (2)
例2 某地出租车计价标准如下:行驶路程在3km(含3km)收费9元,以后每行驶1km增加收费1.6元;若行驶总路程超过10km,则超过路程以每千米2.4元.(1)列出旅客乘坐出租车行驶路程与应交付的大车费之间的函数关系;(2)如果小明只有20元钱,他最多可以乘坐多少千米?
4.当堂训练(1)某水果批发店,100kg内单价1元/kg;500kg内,100kg以上0.8元/kg;500kg及以上0.6元/kg;试写出批发x kg应付的钱数y(元)的函数的解析式. (2)某商店规定,某种商品一次性购买10kg以下按零售价格50元/kg销售;若一次性购买量满10kg可打9折;若一次性购买量满20kg,可按40元/kg的更优惠价格供货.① 试写出支付金额y(元)与购买量x(kg)之间的函数关系式.② 分别写出购买15kg和25kg应付的金额.
三、【拓展练习】
3.拓展练习: 例1 一家宾馆有客房200间,每间客房的租金为120元/天,近期每天都客满.鉴于市场需求较旺,宾馆欲提高租金.据分析,每间客房每天的租金每提高10元,客房出租数将减少8间.不考虑其他因素,宾馆将每间房每天的租金至少提高到多少,每天的总租金最高?求此时每天的总租金.
*例2 某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式; (2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
答案:⑴ y=(x-50)∙ w=(x-50) ∙ (-2x+240)=-2x2+340x-12000,∴y与x的关系式为:y=-2x2+340x-12000. ⑵ y=-2x2+340x-12000=-2 (x-85) 2+2450,∴当x=85时,y的值最大. ⑶ 当y=2250时,可得方程 -2 (x-85 )2 +2450=2250.解这个方程,得 x1=75,x2=95. 根据题意,x2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.
4.当堂训练:某桶装水经营部每天房租、人员工资等固定成本为200元,每桶水进价为5元,销售单价x(元)与日销售量y1(桶)之间关系如下表示.(1)请写出销售单价x(元)与日销售量y(桶)之间的函数关系式;(2)请写出销售单价x(元)与日销售利润s(元)之间的函数关系式;(3)请根据以上数据说明:这个经营部怎样定价才能获得最大日销售利润?最大日销售利润是多少元?
相关课件
语文版(中职)高中数学拓展模块课文《分段函数》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。
语文版(中职)高中数学拓展模块课文《正弦型函数》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。
高教版(中职)高中数学拓展模块课文《正弦型函数的周期》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。