2021学年8.1 成对数据的相关关系学案及答案
展开8.1 成对数据的相关关系(精讲)
考法一 相关关系
【例1】(1)(2020·全国高二单元测试)对于变量x与y,当x取值一定时,y的取值带有一定的随机性,x,y之间的这种非确定性关系叫做( )
A.函数关系 B.线性关系
C.相关关系 D.回归关系
(2)(2020·全国高二单元测试)对变量x,y有观测数据(xi,yi)(i=1,2,3,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,3,…,10),得散点图2,由这两个散点图可以断定( )
A.x与y正相关,u与v正相关
B.x与y正相关,u与v负相关
C.x与y负相关,u与v正相关
D.x与y负相关,u与v负相关
【一隅三反】
1.(2020·武威第八中学)下列两变量具有相关关系的是( )
A.正方体的体积与边长 B.人的身高与体重
C.匀速行驶车辆的行驶距离与时间 D.球的半径与体积
2.(2020·银川市·宁夏大学附属中学)给出下列关系:其中具有相关关系的是( )
①考试号与考生考试成绩; ②勤能补拙;
③水稻产量与气候; ④正方形的边长与正方形的面积.
A.①②③ B.①③④ C.②③ D.①③
3.(2021·广东深圳)下列四个图象中,两个变量具有正相关关系的是( )
A. B.
C.D.
考点二 样本的相关系数
【例2-1】(2020·吴起高级中学)甲、乙、丙、丁四位同学各自对两变量的线性相关性做试验,并用回归分析方法分别求得相关系数如下表:
| 甲 | 乙 | 丙 | 丁 |
-0.78 |
则哪位同学的试验结果体现A,B两变量有更强的线性相关性( )
A.甲 B.乙 C.丙 D.丁
【例2-2】(2020·重庆九龙坡区·渝西中学)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
销量(万盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求与的相关系数(精确到,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);
(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.
附:(1)相关系数
(2),,,.
【一隅三反】
1.(2021·湖南长沙市·长沙一中高三月考)两个具有线性相关关系的变量的一组数据,,…,下列说法错误的是( )
A.相关系数越接近1,变量相关性越强
B.落在回归直线方程上的样本点越多,回归直线方程拟合效果越好
C.相关指数越小,残差平方和越大,即模型的拟合效果越差
D.若表示女大学生的身高,表示体重则表示女大学生的身高解释了的体重变化
2.(2020·广西钦州市)在线性回归模型中,分别选择了甲,乙,丙,丁四个不同的模型,它们的相关指数分别为0.46,0.85,0.72,0.93,其中回归效果最好的模型是( )
A.甲 B.乙 C.丙 D.丁
3.(2020·黑山县黑山中学)在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主
创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
2.4 | 2.7 | 4.1 | 6.4 | 7.9 |
(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合):
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满500元可减50元;
方案二:每满500元可抽奖一次,每次中奖的概率都为,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客获得100元现金奖励的概率.
②某位顾客购买了1500元的产品,作为专营店老板,是希望该顾客直接选择返回150元现金,还是选择参加三次抽奖?说明理由
附:相关系数公式
参考数据:.
4.(2020·湖南高二期中)湖南省从2021年开始将全面推行“”的新高考模式,新高考对化学、生物、地理和政治等四门选考科目,制定了计算转换T分(即记入高考总分的分数)的“等级转换赋分规则”(详见附1和附2),具体的转换步骤为:①原始分Y等级转换;②原始分等级内等比例转换赋分.某校的一次年级统考中,政治、生物两选考科目的原始分分布如下表:
等级 | A | B | C | D | E |
比例 | 约15% | 约35% | 约35% | 约13% | 约2% |
政治学科各等级对应的原始分区间 | |||||
生物学科各等级对应的原始分区间 |
现从政治、生物两学科中分别随机抽取了20个原始分成绩数据,作出茎叶图:
(1)根据茎叶图,分别求出政治成绩的中位数和生物成绩的众数;
(2)该校的甲同学选考政治学科,其原始分为82分,乙同学选考生物学科,其原始分为91分,根据赋分转换公式,分别求出这两位同学的转化分;
(3)根据生物成绩在等级B的6个原始分和对应的6个转化分,得到样本数据,请计算生物原始分与生物转换分之间的相关系数,并根据这两个变量的相关系数谈谈你对新高考这种“等级转换赋分法”的看法.
附1:等级转换的等级人数占比与各等级的转换分赋分区间.
等级 | A | B | C | D | E |
原始分从高到低排序的等级人数占比 | 约15% | 约35% | 约35% | 约13% | 约2% |
转换分T的赋分区间 |
附2:计算转换分T的等比例转换赋分公式:.(其中:,,分别表示原始分Y对应等级的原始分区间下限和上限;,分别表示原始分对应等级的转换分赋分区间下限和上限.T的计算结果按四舍五入取整数)
附3:,,.
高中数学人教A版 (2019)选择性必修 第三册8.1 成对数据的相关关系优秀导学案: 这是一份高中数学人教A版 (2019)选择性必修 第三册8.1 成对数据的相关关系优秀导学案,共7页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。
数学8.1 成对数据的相关关系学案设计: 这是一份数学8.1 成对数据的相关关系学案设计,共14页。
高中数学人教A版 (2019)选择性必修 第三册8.1 成对数据的相关关系学案: 这是一份高中数学人教A版 (2019)选择性必修 第三册8.1 成对数据的相关关系学案,共14页。