


第八章 第十二节 圆锥曲线的最值范围问题解析版
展开
这是一份第八章 第十二节 圆锥曲线的最值范围问题解析版,共31页。
例1 如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(1)设AB的中点为M,证明:PM垂直于y轴;
(2)若P是半椭圆x2+eq \f(y2,4)=1(x0)的离心率e=eq \f(\r(3),2),直线x+eq \r(3)y-1=0被以椭圆C的短轴为直径的圆截得的弦长为eq \r(3).
(1)求椭圆C的方程;
(2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=MA·MB,求λ的取值范围.
解 (1)因为原点到直线x+eq \r(3)y-1=0的距离为eq \f(1,2).
所以eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)))2=b2(b>0),解得b=1.
又e2=eq \f(c2,a2)=1-eq \f(b2,a2)=eq \f(3,4),得a=2.
所以椭圆C的方程为eq \f(x2,4)+y2=1.
(2)当直线l的斜率为0时,λ=MA·MB=12.
当直线l的斜率不为0时,设直线l:x=my+4,A(x1,y1),B(x2,y2),
联立方程eq \b\lc\{\rc\ (\a\vs4\al\c1(x=my+4,,\f(x2,4)+y2=1,))得(m2+4)y2+8my+12=0.
由Δ=64m2-48(m2+4)>0,得m2>12,
所以y1y2=eq \f(12,m2+4).
λ=MA·MB=eq \r(m2+1)|y1|·eq \r(m2+1)|y2|
=(m2+1)·|y1y2|=eq \f(12m2+1,m2+4)=12eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(3,m2+4))).
由m2>12,得00,
又x1x2=(my1-1)(my2-1)=m2y1y2-m(y1+y2)+1.
∴x1x2+y1y2=(1+m2)y1y2-m(y1+y2)+1
=(1+m2)·eq \f(-3,4+m2)-eq \f(2m2,4+m2)+1=eq \f(1-4m2,4+m2)>0,
∴m2
