年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版数学九年级上册月考模拟试卷十三(含答案)

    人教版数学九年级上册月考模拟试卷十三(含答案)第1页
    人教版数学九年级上册月考模拟试卷十三(含答案)第2页
    人教版数学九年级上册月考模拟试卷十三(含答案)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版数学九年级上册月考模拟试卷十三(含答案)

    展开

    这是一份人教版数学九年级上册月考模拟试卷十三(含答案),共20页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
    人教版数学九年级上册月考模拟试卷
    一、选择题
    1.下列说法正确的是(  )
    A.长度相等的两条弧是等弧 B.平分弦的直径垂直于弦
    C.直径是同一个圆中最长的弦 D.过三点能确定一个圆
    2.如图,AB、CD是⊙O的两条弦,连结AD、BC.若∠BCD=70°,则∠BAD的度数为(  )

    A.40° B.50° C.60° D.70°
    3.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为(  )
    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
    4.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是(  )
    A.相离 B.相交 C.相切 D.外切
    5.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,AB=8,OC=5,则MD的长为(  )

    A.4 B.2 C. D.1
    6.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=(  )

    A.35° B.70° C.110° D.140°
    7.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为(  )
    A.90° B.120° C.150° D.180°
    8.圆内接正三角形的边长是12cm,则该圆的半径长是 (  )
    A.3cm B.4cm C.3cm D.4cm
    9.(34分)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是(  )

    A.9 B.10 C.12 D.14
    10.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为(  )

    A.6.5米 B.9米 C.13米 D.15米
    11.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为 (  )[来源:学科网ZXXK]
    A.30° B..60° C.30°或150° D.60°或120°
    12.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB'C',若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(  )

    A.π B.π C.2π D.4π
    二、填空题
    13.△ABC在平面直角坐标系中的位置如图所示,其中A(1,2),B(1,1),C(3,1),将△ABC绕原点O顺时针旋转90°后得到△A′B′C,则点A旋转到点A′所经过的路线长为   .

    14.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为   .

    15.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是   cm2.

    16.如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为   度.






    三.解答题
    17.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.
    (1)求∠APB的度数;
    (2)当OA=3时,求AP的长.[来源:Zxxk.Com]





    18.如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.
    (1)求证:DC是⊙O的切线;
    (2)若AB=2,求DC的长.




    19.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.




    20.如图,要把破残的圆片复制完整,已知弧上的三点A,B,C.
    (1)试确定BAC所在圆的圆心O(保留作图痕迹);
    (2)设△ABC是等腰三角形,底边BC=8cm,腰AB=2cm,求圆片的半径R.




    21.如图,正方形ABCD的边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE.
    (1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明情况;
    (2)求阴影部分的面积.













    22.以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
    (1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
    (2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被⊙O截得的弦长.

     
    参考答案
     
    一、选择题(1-8小题3分9-12小题4分,本题共40分)
    1.下列说法正确的是(  )
    A.长度相等的两条弧是等弧 B.平分弦的直径垂直于弦
    C.直径是同一个圆中最长的弦 D.过三点能确定一个圆
    【解答】解:A、长度相等的两条弧是等弧,错误.
    B、平分弦的直径垂直于弦,此命题错误;
    B、直径是同一个圆中最长的弦,命题正确;
    C、过三点能确定一个圆,此命题错误;
    故选C.[来源:学#科#网]
     
    2.如图,AB、CD是⊙O的两条弦,连结AD、BC.若∠BCD=70°,则∠BAD的度数为(  )

    A.40° B.50° C.60° D.70°
    【解答】解:∵∠BCD=70°,
    ∴∠BAD=∠BCD=70°.
    故选D.
     
    3.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为(  )
    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
    【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,
    即点A到圆心O的距离小于圆的半径,
    ∴点A在⊙O内.
    故选B.
     
    4.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是(  )
    A.相离 B.相交 C.相切 D.外切
    【解答】解:∵⊙O的直径是10,
    ∴⊙O的半径r=5,
    ∵圆心O到直线l的距离d是5,
    ∴r=d,
    ∴直线l和⊙O的位置关系是相切,
    故选C.
     
    5.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,AB=8,OC=5,则MD的长为(  )

    A.4 B.2 C. D.1
    【解答】解:连接OA,
    ∵CD是直径,AB是弦,AB⊥CD于M,AB=8,
    ∴AM=BM=4,
    ∵OC=5,
    ∴OA=OD=5,
    ∴OM===3.
    ∴DM=OD﹣OM=5﹣3=2.
    故选B.

     
    6.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=(  )

    A.35° B.70° C.110° D.140°
    【解答】解:∵四边形ABCD内接于⊙O,
    ∴∠A=∠DCE=70°,
    ∴∠BOD=2∠A=140°.
    故选D.
     
    7.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为(  )
    A.90° B.120° C.150° D.180°
    【解答】解:圆锥侧面展开图的弧长是:2πcm,
    设圆心角的度数是x度.则=2π,
    解得:x=120.
    故选B.
     
    8.圆内接正三角形的边长是12cm,则该圆的半径长是 (  )
    A.3cm B.4cm C.3cm D.4cm
    【解答】解:如图,△ABC是⊙O的边长为2的内接正三角形.
    连OB,OA,
    ∵△ABC是正三角形,
    ∴AO垂直平分BC,设垂足为D.
    ∴BD=CD=6;
    又∵∠OBD=30°,
    ∴OD=2,则OB=2OD=4
    故选D.

     
    9.(34分)如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是(  )

    A.9 B.10 C.12 D.14
    【解答】解:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14.故选D.
     
    10.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为(  )

    A.6.5米 B.9米 C.13米 D.15米
    【解答】解:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O
    连接OA.根据垂径定理,得AD=6
    设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5
    故选:A.

     
    11.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为 (  )
    A.30° B..60° C.30°或150° D.60°或120°
    【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,
    ∵OA=OB=6cm,AB=6cm,
    ∴OA=AB=OB,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴∠C=∠AOB=30°,
    ∴∠D=180°﹣∠C=150°,
    ∴所对的圆周角的度数为:30°或150°.
    故选:C.

     
    12.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB'C',若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(  )

    A.π B.π C.2π D.4π
    【解答】解:扇形BAB′的面积是: =,
    在直角△ABC中,BC=AB•sin60°=4×=2,AC=AB=2,
    S△ABC=S△AB′C′=AC•BC=×2×2=2.
    扇形CAC′的面积是: =,
    则阴影部分的面积是:扇形BAB′的面积+S△AB′C′﹣S△ABC﹣扇形CAC′的面积=﹣=2π.
    故选:C.
     
    二、填空题(每小题4分,本题共16分):
    13.△ABC在平面直角坐标系中的位置如图所示,其中A(1,2),B(1,1),C(3,1),将△ABC绕原点O顺时针旋转90°后得到△A′B′C,则点A旋转到点A′所经过的路线长为  .

    【解答】解:连接OA、OA',
    由勾股定理得:OA==,
    ∠AOA'=90°,
    ∴点A旋转到点A′所经过的路线长为: =.
    故答案为:.

     
    14.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为 1或5 .

    【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;
    当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.
    故答案为:1或5.
     
    15.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是 400π cm2.

    【解答】解:圆锥侧面积公式为:s侧面积=πrR=π×10×40=400π.
    故答案为:400π.
     
    16.如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为 30 度.

    【解答】解:连接OC,
    ∴∠OCD=90°,
    ∴∠COB=2∠A=60°,
    ∴∠D=90°﹣∠COB=30°.

     
    三.解答题(共64分)
    17.(10分)如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.
    (1)求∠APB的度数;
    (2)当OA=3时,求AP的长.

    【解答】解:(1)∵在△ABO中,OA=OB,∠OAB=30°,
    ∴∠AOB=180°﹣2×30°=120°,
    ∵PA、PB是⊙O的切线,
    ∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
    ∴在四边形OAPB中,
    ∠APB=360°﹣120°﹣90°﹣90°=60°.
    (2)如图,连接OP;

    ∵PA、PB是⊙O的切线,
    ∴PO平分∠APB,即∠APO=∠APB=30°,
    又∵在Rt△OAP中,OA=3,∠APO=30°,
    ∴AP=.
     
    18.(10分)如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.
    (1)求证:DC是⊙O的切线;
    (2)若AB=2,求DC的长.

    【解答】(1)证明:连接OC.
    ∵OB=OC,∠B=30°,
    ∴∠OCB=∠B=30°.
    ∴∠COD=∠B+∠OCB=60°.
    ∵∠BDC=30°,
    ∴∠BDC+∠COD=90°,DC⊥OC.
    ∵BC是弦,
    ∴点C在⊙O上,
    ∴DC是⊙O的切线,点C是⊙O的切点.
    (2)∵AB=2,
    ∴OC=OB==1.
    ∵在Rt△COD中,∠OCD=90°,∠D=30°,
    ∴DC=OC=.[来源:Zxxk.Com]

     
    19.(8分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.

    【解答】解:连结BE,如图,
    ∵OD⊥AB,
    ∴AC=BC=AB=×8=4,
    设AO=x,则OC=OD﹣CD=x﹣2,
    在Rt△ACO中,∵AO2=AC2+OC2,
    ∴x2=42+(x﹣2)2,
    解得 x=5,
    ∴AE=10,OC=3,[来源:学科网]
    ∵AE是直径,
    ∴∠ABE=90°,
    ∵OC是△ABE的中位线,
    ∴BE=2OC=6,
    在Rt△CBE中,CE===2.

     
    20.(12分)如图,要把破残的圆片复制完整,已知弧上的三点A,B,C.
    (1)试确定BAC所在圆的圆心O(保留作图痕迹);
    (2)设△ABC是等腰三角形,底边BC=8cm,腰AB=2cm,求圆片的半径R.

    【解答】解:(1)如图所示,圆心O即为所求.


    (2)如图,连接AO交BC于D,连接OB,

    ∵△ABC是等腰三角形,
    ∴DB=DC,AD⊥BC,
    ∵AB=AC=2cm,BC=8cm,
    ∴BD=4cm,
    ∴AD==2cm,
    ∵OB=OA=R,
    ∴R2=42+(R﹣2)2,
    ∴R=5,
    即圆片的半径R为5cm.
     
    21.(12分)如图,正方形ABCD的边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE.
    (1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明情况;
    (2)求阴影部分的面积.

    【解答】解:(1)DE与半圆O相切.理由如下:
    过点O作OF⊥DE,垂足为点F,
    在Rt△ADE中,∵AD=2,AE=1.5,
    ∴DE==2.5,
    ∵S四边形BCDE=S△DOE+S△BOE+S△CDO,
    ∴×(0.5+2)×2=×2.5•OF+×1×0.5+×1×2,
    ∴OF=1,
    ∵OF的长等于圆O的半径,OF⊥DE,
    ∴DE与半圆O相切;
    (2)阴影部分的面积=梯形BECD的面积﹣半圆的面积
    =×(0.5+2)×2﹣×π×12
    =(cm2).

     
    22.(12分)以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
    (1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
    (2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被⊙O截得的弦长.

    【解答】解:(1)如图一,连接AQ.
    由题意可知:OQ=OA=1.
    ∵OP=2,
    ∴A为OP的中点.
    ∵PQ与⊙O相切于点Q,
    ∴△OQP为直角三角形.
    ∴.
    即△OAQ为等边三角形.
    ∴∠QOP=60°.

    (2)由(1)可知点Q运动1秒时经过的弧长所对的圆心角为30°,若Q按照(1)中的方向和速度继续运动,那么再过5秒,则Q点落在⊙O与y轴负半轴的交点处(如图二).设直线PQ与⊙O的另外一个交点为D,
    过O作OC⊥QD于点C,则C为QD的中点.
    ∵∠QOP=90°,OQ=1,OP=2,
    ∴QP=.
    ∵,
    ∴OC==.
    ∵OC⊥QD,OQ=1,OC=,
    ∴QC==.
    ∴QD=.


     

    相关试卷

    人教版数学九年级上册月考模拟试卷十五(含答案):

    这是一份人教版数学九年级上册月考模拟试卷十五(含答案),共29页。试卷主要包含了选择题,填空题,解答题,解答题二等内容,欢迎下载使用。

    人教版数学九年级上册月考模拟试卷一(含答案):

    这是一份人教版数学九年级上册月考模拟试卷一(含答案),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教版数学九年级上册月考模拟试卷四(含答案):

    这是一份人教版数学九年级上册月考模拟试卷四(含答案),共30页。试卷主要包含了选择题,填空题,解答等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map