所属成套资源:人教版数学九年级上册月考模拟试卷(含答案)
- 人教版数学九年级上册月考模拟试卷四(含答案) 试卷 0 次下载
- 人教版数学九年级上册月考模拟试卷十三(含答案) 试卷 0 次下载
- 人教版数学九年级上册月考模拟试卷五(含答案) 试卷 0 次下载
- 人教版数学九年级上册月考模拟试卷一(含答案) 试卷 2 次下载
- 人教版数学九年级上册月考模拟试卷十二(含答案) 试卷 2 次下载
人教版数学九年级上册月考模拟试卷八(含答案)
展开
这是一份人教版数学九年级上册月考模拟试卷八(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学九年级上册月考模拟试卷
一、选择题
1.下列交通标志中既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
2.一元二次方程x2﹣9=0的根为( )
A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x1=0,x2=3
3.一元二次方程x2+4x+1=0配方后可变形为( )
A.(x+2)2=﹣1 B.(x﹣2)2=﹣1 C.(x﹣2)2=3 D.(x+2)2=3
4.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144
C.144(1+x)2=100 D.100(1+x)2=144
5.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是( )
A. B. C. D.
6.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是( )
A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3
7.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( )
A.45° B.60° C.75° D.90°
8.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
9.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是( )
A.35° B.40° C.45° D.50°
10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc>0;②2a+b=0;③4a+2b+c<0;④当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题
11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是 .
12.现在有五张分别画有等边三角形,平行四边形,矩形,正五边形和圆的五个图形的卡片,它们的背面相同,小梅将它们的背面朝上,从中任意抽出一张卡片,抽出的图形为四边形的概率是 .
13.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,
∠E=30°,则∠F= .
14.二次函数y=x2﹣4x+3的图象交x轴于A、B两点,交y轴于点C,△ABC的面积为 .
15.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为 cm.
三、解答题
16.(1)解方程:(x﹣5)2=2(5﹣x)
(2)若关于x的一元二次方程x2+(2m﹣3)x+(m2﹣3)=0有两个不相等的实数根,求m的取值范围.
17.如图,△ABC的顶点都在方格线的交点(格点)上.
(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′.
(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″.
(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是 .
18.阅读理解:若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=﹣,x1•x2=,我们把它们称为一元二次方程的根与系数关系定理.
问题解决:请你参考根与系数关系定理,解答下列问题:
(1)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为 .
(2)求方程2x2﹣3x=5的两根之和,两根之积.
19.学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本,每种笔记本被选中的可能性相同.
(1)若他去买一本笔记本,则他买到A种笔记本的概率是 ;
(2)若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,请用树状图或列表法求出恰好买到A种笔记本和C种笔记本的概率.
20.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
21.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
22.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为 度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.
23.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.下列交通标志中既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
【解答】解:A、是轴对称图形,不是中心对称图形;
B、是轴对称图形,不是中心对称图形;
C、是轴对称图形,也是中心对称图形;
D、不是轴对称图形,也不是中心对称图形.
故选:C.
2.一元二次方程x2﹣9=0的根为( )
A.x=3 B.x=﹣3 C.x1=3,x2=﹣3 D.x1=0,x2=3
【解答】解:x2﹣9=0,
(x﹣3)(x+3)=0,
x﹣3=0或x+3=0,
解得:x1=3,x2=﹣3.
故选:C.
3.一元二次方程x2+4x+1=0配方后可变形为( )
A.(x+2)2=﹣1 B.(x﹣2)2=﹣1 C.(x﹣2)2=3 D.(x+2)2=3
【解答】解:x2+4x+1=0,
x2+4x=﹣1,
x2+4x+4=3,
(x+2)2=3,
故选:D.
4.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
【解答】解:设该果园水果产量的年平均增长率为x,则2013年的产量为100(1+x)吨,2014年的产量为100(1+x)(1+x)=100(1+x)2吨,
根据题意,得100(1+x)2=144,
故选:D.
5.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是( )
A. B. C. D.
【解答】解:画树状图得:
∵共有16种等可能的结果,两次摸出红球的有9种情况,
∴两次摸出红球的概率为;
故选:D.
6.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是( )
A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3
【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得
y=(x+2)2﹣3,
故选:B.
7.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( )
A.45° B.60° C.75° D.90°
【解答】解:如图,连接OB、OC,则∠BOC=90°,
根据圆周角定理,得:∠BPC=∠BOC=45°.
故选:A.
8.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
【解答】解:在△ABC中,
∵AB=5,BC=3,AC=4,
∴AC2+BC2=32+42=52=AB2,
∴∠C=90°,
如图:设切点为D,连接CD,
∵AB是⊙C的切线,
∴CD⊥AB,
∵S△ABC=AC•BC=AB•CD,
∴AC•BC=AB•CD,
即CD===,
∴⊙C的半径为,
故选:B.
9.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是( )
A.35° B.40° C.45° D.50°
【解答】解:∵AB=AB',
∴∠ABB'=∠AB'B===55°,
在直角△BB'C中,∠BB'C=90°﹣55°=35°.
故选:A.
10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①abc>0;②2a+b=0;③4a+2b+c<0;④当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【解答】解:根据函数图象,我们可以得到以下信息:a<0,c>0,对称轴x=1,b>0,与x轴交于(﹣1,0)(3,0)两点.
①abc<0,错误;
②∵对称轴x=﹣=1时,
∴2a+b=0,正确;
③当x=2时,y=4a+2b+c>0,错误;
④当x=﹣1或x=3时,函数y的值都等于0,故④正确;
故选:B.
二、填空题(共5小题,每小题3分,满分15分)
11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是 (5,3) .
【解答】解:∵二次函数y=﹣2(x﹣5)2+3是顶点式,
∴顶点坐标为(5,3).
故答案为:(5,3).
12.现在有五张分别画有等边三角形,平行四边形,矩形,正五边形和圆的五个图形的卡片,它们的背面相同,小梅将它们的背面朝上,从中任意抽出一张卡片,抽出的图形为四边形的概率是 .
【解答】解:等边三角形、平行四边形、矩形、正五边形和圆中四边形是平行四边形、矩形,
所以抽出的图形为四边形的概率是,
故答案为:.
13.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,
∠E=30°,则∠F= 40° .
【解答】解:∵∠A=55°,∠E=30°,[来源:Z,xx,k.Com]
∴∠EBF=∠A+∠E=85°,
∵∠A+∠BCD=180°,
∴∠BCD=180°﹣55°=125°,
∵∠BCD=∠F+∠CBF,
∴∠F=125°﹣85°=40°.
故答案为40°.
14.二次函数y=x2﹣4x+3的图象交x轴于A、B两点,交y轴于点C,△ABC的面积为 3 .
【解答】解:由表达式y=x2﹣4x+3=(x﹣1)×(x﹣3),
则与x轴坐标为:A(1,0),B(3,0),
令x=0,得y=3,即C(0,3)
∴△ABC的面积为:.
15.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为 cm.
【解答】解:∵在Rt△ABC中,∠B=30°,AB=10cm,
∴AC=AB=5cm.
根据旋转的性质知,A′C=AC,
∴A′C=AB=5cm,
∴点A′是斜边AB的中点,
∴AA′=AB=5cm,
∴AA′=A′C=AC,
∴∠A′CA=60°,
∴CA′旋转所构成的扇形的弧长为: =(cm).
故答案是:.
三、解答题(共8小题,满分75分)
16.(10分)(1)解方程:(x﹣5)2=2(5﹣x)
(2)若关于x的一元二次方程x2+(2m﹣3)x+(m2﹣3)=0有两个不相等的实数根,求m的取值范围.
【解答】解:(1)(x﹣5)2=2(5﹣x),
(x﹣5)2+2(5﹣x)=0,
(x﹣5)(x﹣5+2)=0,
x﹣5=0,x﹣3=0,
x1=5,x2=3;
(2)∵一元二次方程x2+(2m﹣3)x+(m2﹣3)=0有两个不相等的实数根,
∴△=(2m﹣3)2﹣4(m2﹣3)>0,
4m2﹣12m+9﹣4m2+12>0,
解得,m<.
17.(6分)如图,△ABC的顶点都在方格线的交点(格点)上.
(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′.
(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″.
(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是 (2,﹣3) .
【解答】解:(1)如图所示:△A′B′C′,即为所求;
(2)如图所示:△A″B″C″,即为所求;
(3)将△ABC绕原点O旋转180°,A的对应点A1的坐标是(2,﹣3).
故答案为:(2,﹣3).
18.(6分)阅读理解:若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=﹣,x1•x2=,我们把它们称为一元二次方程的根与系数关系定理.
问题解决:请你参考根与系数关系定理,解答下列问题:
(1)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为 ﹣2 .
(2)求方程2x2﹣3x=5的两根之和,两根之积.
【解答】解:(1)设一元二次方程的两根为x1,x2,且x1=﹣1,
则根据一元二次方程根与系数的关系,
得﹣1+x2=﹣3,
解得:x2=﹣2.
故答案是:﹣2.
(2)解:原方程可以转化为:2x2﹣3x﹣5=0,
∴a=2,b=﹣3,c=﹣5,
∵b2﹣4ac=(﹣3)2﹣4×2×(﹣5)=49>0,[来源:Zxxk.Com]
∴方程有两个不相等的实数根,
设方程的两个实数根分别x1,x2,则
x1+x2=,x1x2=﹣.
19.(9分)学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本,每种笔记本被选中的可能性相同.
(1)若他去买一本笔记本,则他买到A种笔记本的概率是 ;
(2)若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,请用树状图或列表法求出恰好买到A种笔记本和C种笔记本的概率.
【解答】解:(1)∵学校旁边的文具店里有A、B、C、D四种笔记本,
∴若他去买一本笔记本,则他买到A种笔记本的概率是:;[来源:学科网]
故答案为:.
(2)画树状图得:
∵共有12种等可能的结果,恰好买到A种笔记本和C种笔记本的有2种情况,
∴恰好买到A种笔记本和C种笔记本的概率为: =.[来源:学&科&网]
20.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
【解答】(1)证明:连接OD,
∵OB=OD,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC,
∵DF是⊙O的切线,
∴DF⊥OD,
∴DF⊥AC.
(2)解:连接OE,
∵DF⊥AC,∠CDF=22.5°,
∴∠ABC=∠ACB=67.5°,
∴∠BAC=45°,
∵OA=OE,
∴∠AOE=90°,
∵⊙O的半径为4,
∴S扇形AOE=4π,S△AOE=8 ,
∴S阴影=4π﹣8.
21.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
【解答】解:(1)由题意得出:
w=(x﹣20)∙y
=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600,
故w与x的函数关系式为:w=﹣2x2+120x﹣1600;
(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,
∵﹣2<0,
∴当x=30时,w有最大值.w最大值为200.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.
(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.
解得 x1=25,x2=35.
∵35>28,
∴x2=35不符合题意,应舍去.
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
22.(12分)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为 60 度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.
【解答】(1)证明:∵△ABD和△ACE都是等边三角形.
∴AB=AD,AE=AC,∠BAD=∠CAE=60°,
∴∠BAD+∠DAE=∠CAE+∠DAE,
即∠BAE=∠DAC,
在△BAE和△DAC中,
,
∴△BAE≌△DAC(SAS),
∴BE=CD;
(2)解:①∵∠BAD=∠CAE=60°,
∴∠DAE=180°﹣60°×2=60°,
∵边AD′落在AE上,
∴旋转角=∠DAE=60°.
故答案为:60.
②当AC=2AB时,△BDD′与△CPD′全等.
理由如下:由旋转可知,AB′与AD重合,
∴AB=BD=DD′=AD′,
∴四边形ABDD′是菱形,
∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,
∵△ACE是等边三角形,
∴AC=AE,∠ACE=60°,
∵AC=2AB,
∴AE=2AD′,
∴∠PCD′=∠ACD′=∠ACE=×60°=30°,
又∵DP∥BC,
∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,
在△BDD′与△CPD′中,
,
∴△BDD′≌△CPD′(ASA).
23.(13分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
【解答】解:(1)由y=ax2+bx﹣3得C(0.﹣3),
∴OC=3,
∵OC=3OB,
∴OB=1,
∴B(﹣1,0),
把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,
∴,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)设连接AC,作BF⊥AC交AC的延长线于F,
∵A(2,﹣3),C(0,﹣3),
∴AF∥x轴,
∴F(﹣1,﹣3),
∴BF=3,AF=3,
∴∠BAC=45°,
设D(0,m),则OD=|m|,
∵∠BDO=∠BAC,
∴∠BDO=45°,
∴OD=OB=1,
∴|m|=1,
∴m=±1,
∴D1(0,1),D2(0,﹣1);
(3)设M(a,a2﹣2a﹣3),N(1,n),
①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴于E,AF⊥x轴于F,
则△ABF≌△NME,
∴NE=AF=3,ME=BF=3,
∴|a﹣1|=3,
∴a=4或a=﹣2,
∴M(4,5)或(﹣2,5);
②以AB为对角线,BN=AM,BN∥AM,如图3,
则N在x轴上,M与C重合,
∴M(0,﹣3),
综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,5)或(0,﹣3).
相关试卷
这是一份苏科版数学九年级上册月考模拟试卷八(含答案),共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版数学九年级上册月考模拟试卷十二(含答案),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版数学九年级上册月考模拟试卷09(含答案),共13页。试卷主要包含了选择题,四象限,故A选项错误;,解答题等内容,欢迎下载使用。