所属成套资源:备战2022年高考数学一轮复习考点针对训练(江苏专用)
考点13 统计与概率-备战2022年高考数学一轮复习考点针对训练(江苏专用)(原卷版)
展开
这是一份考点13 统计与概率-备战2022年高考数学一轮复习考点针对训练(江苏专用)(原卷版),共20页。
备战2022年高考数学一轮复习考点针对训练(江苏专用)
考点13统计与概率
抽样
一、 选择题
1.(2021·陕西西安市·西北工业大学附属中学高三其他模拟(理))总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第4个个体的编号为( )
7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.01
2.(2021·陕西西安市·西安中学高三其他模拟(文))某高二年级有文科学生500人,理科学生1500人,为了解学生对数学的喜欢程度,现用分层抽样的方法从该年级抽取一个容量为60的样本,则样本中文科生的人数是( )
A.15 B.18 C.20 D.25
3.(2021·河北邯郸市·高三二模)某商场有三层楼,最初规划一层为生活用品区,二层为服装区,三层为餐饮区,招商工作结束后,共有100家商家入驻,各楼层的商铺种类如下表所示,若从所有商铺中随机抽取一家,该商铺所在楼层与最初规划不一致的概率为( )
生活用品店
服装店
餐饮店
一层
25
7
3
二层
4
27
4
三层
6
1
23
A.0.75 B.0.6 C.0.4 D.0.25
4.(2021·内蒙古锡林郭勒盟·高三二模(文))青少年近视问题已经成为我国面临的重要社会问题.已知某校有小学生3600人,有初中生2400人,为了解该校学生的近视情况,用分层抽样的方法从该校的所有学生中随机抽取120名进行视力检查,则小学生应抽取的人数与初中生应抽取的人数的差是( )
A.24 B.48 C.72 D.96
5.(2021·全国高三月考(文))“互联网+”时代全民阅读的内涵已多元化,在线读书成为一种生活方式.某高校为了解本校学生阅读情况,拟采用分层抽样方法从该校四个年级中抽取一个容量为360的样本进行调查,大一与大二学生占全校一半,大三学生与大四学生之比为3:2,则大四学生应抽取的学生为( )
A.72 B.100 C.108 D.120
二、 解答题
6.(2021·江西萍乡市·高三二模(文))某中学高三共男生800人,女生1200人.现学校某兴趣小组为研究学生日均消费水平是否与性别有关,采用分层抽样的方式从高三年级抽取男女生若干人.记录其日均消费,得到如图所示男生日均消费的茎叶图和女生日均消费的频率分布直方图.将所抽取女生的日均消费分为以下五组:,规定日均消费不超过25元的人为“节俭之星”.
(1)请完成下面的列联表;
“节俭之星”
非“节俭之星”
总计
男生
女生
总计
根据以上的列联表,能否有90%的把握认为学生是否为“节俭之星”与性别有关?
(2)现已知学校某小组有6名“节俭之星”,其中男生2人,女生4人.现从中选取2人在学校做勤俭节约宣讲活动报告,求选取的2人中至少有一名男生的概率.
附:,其中.
7.(2021·全国(理))在新的高考改革形式下,全国某些省市年入学的高一学生都进行了选科,为了解学生的选科情况,某中学对已经选了(语文、数学、外语)+物理的学生如何选择另外两门学科进行了调整,另外两科有种组合:①化学+生物,②生物+地理,③化学+地理,④生物+政治,⑤化学+政治,⑥政治+地理.假设学生选择每种组合是等可能的.
(1)每名学生若选全理(即化学+生物)或全文(即政治+地理)记分,若文理皆有(其余种组合)记分,且每名学生如何选科是相互独立的,现有甲、乙、丙名学生,记总得分为,求的分布列及数学期望;
(2)如图所示的条形图显示了该校名学生另外两门学科选择情况的统计结果.教学班要求每班人数不低于人,且不超过人,若低于人,则需要加入选择其他组合的学生,编成混合班,但混合班要求学生选择的另外两门学科中有一门共同学科,同时尽最大限度减小混合班个数,也不出现含个组合的混合班,试通过条形图,以频率估计概率,预测全校名学生的组班情况,请给出一个较合理的编班方案,指明最少需要组成几个混合班,是什么样的组合.
统计图表
一、 选择题
1.(2021·全国高三其他模拟(文))如图是我国2016年第1季度至2020年第2季度重点城市分季度土地供应统计图,针对这些季度的数据,下列说法错误的是( )
A.各季度供应规划建筑面积的极差超过15000万平方米
B.各季度供应规划建筑面积的平均数超过15000万平方米
C.2019年第4季度与2018年第4季度相比,供应规划建筑面积上涨幅度高于10%
D.2020年第1季度与2019年第1季度相比,供应规划建筑面积下降幅度高于10%
2.(2021·天津市南开区南大奥宇培训学校高三其他模拟)已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则抽取的高中生中近视人数为( ).
A.20 B.25 C.30 D.40
3.(2021·浑源县第七中学校高三其他模拟(文))如图为我国2020年2月至10月的同城快递量与异地快递量的月统计图:
根据统计图,下列结论正确的是( )
A.异地快递量逐月递增
B.同城快递量,9月份少于10月份
C.同城和异地的月快递量达到峰值的月份相同
D.同城和异地的快递量的月增长率达到最大的月份相同
4.(2021·全国高三其他模拟(理))基尼系数是国际上用来综合衡量居民内部收入分配差异状况的一个重要指标,它的一种简便易行的计算方法是根据中位数对平均数的占比来估计基尼系数(换算表如下表所示).假设某地从事自媒体的人员仅有4人,年收入分别为万元,万元,万元,万元,则这人的年收入的基尼系数为( )
中位数占比一基尼系数换算表
中位数占比
基尼系数
A. B. C. D.
5.(2021·全国高三其他模拟(理))为达成“碳达峰、碳中和”的目标,我们需坚持绿色低碳可持续发展道路,可再生能源将会有一个快速发展的阶段.太阳能是一种可再生能源,光伏是太阳能光伏发电系统的简称,主要有分布式与集中式两种方式.下面的图表是近年来中国光伏市场发展情况表,则下列结论中正确的是( )
A.2013~2020年,年光伏新增装机规模同比(与上年相比)增幅逐年递减
B.2013~2020年,年光伏发电量与年份成负相关
C.2013~2020年,年新增装机规模中,分布式的平均值大于集中式的平均值
D.2013~2020年,每年光伏发电量占全国发电总量的比重与年份成正相关
二、 解答题
6.(2021·海南高三其他模拟)企业在商业活动中有依法纳税的基本义务,不依法纳税叫做逃税,是一种违法行为.某地区有2万家企业,政府部门抽取部分企业统计其去年的收入,得到下面的频率分布表.根据当地政策综合测算,企业应缴的税额约为收入的5%,而去年该地区企业实际缴税的总额为291亿元.
收入(千万元)
频率
0.3
0.5
0.12
0.06
0.02
(1)估计该地区去年收入大于等于4千万元的企业数量;
(2)估计该地区企业去年的平均收入,并以此估计该地区逃税的企业数量;
(3)根据统计,该地区企业逃税被查出来的概率为0.3,被查出逃税的企业除了要补缴税款以外,还会被处以应缴税额倍的罚款,从企业逃税的获益期望考虑,至少定为多少,才能对逃税行为起到惩罚作用?注:每组数据以区间中点值为代表,假设逃税的企业缴税额为0,未逃税的企业都足额缴税.
7.(2021·全国高三月考(文))某中学现有学生人,为了解学生数学学习情况,对学生进行了数学测频率试,得分分布在之间,按,,,,分组,得到的频率分布直方图如图所示,且已知.
(1)求,的值;
(2)估计该中学数学测试的平均分(同组数据以这组数据的中间值作代表);
(3)估计该中学数学分数在的人数.
用样本估计总体
一、选择题
1.(2021·辽宁高三其他模拟)某公司为提高职工政治素养,对全体职工进行了一次时事政治测试,随机抽取了100名职工的成绩,并将其制成如图所示的频率分布直方图,以样本估计总体,则下列结论中正确的是( )
A.该公司职工的测试成绩不低于60分的人数约占总人数的80%
B.该公司职工测试成绩的中位数约为75分
C.该公司职工测试成绩的平均值约为68分
D.该公司职工测试成绩的众数约为60分
2.(2021·定远县育才学校高三其他模拟(文))2021年开始,某省将试行“”的普通高考新模式,即除物理语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助政治学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )
A.甲的物理成绩领先年级平均分最多
B.甲有2个科目的成绩低于年级平均分
C.甲的成绩从高到低的前3个科目依次是地理、化学、历史
D.对甲而言,物理、化学、地理是比较理想的一种选科结果
3.(2021·全国高考真题(文))为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
4.(2021·上海市青浦高级中学高三三模)有17名同学参加百米竞赛,预赛成绩各不相同,要取前8名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道17名同学成绩的( )
A.平均数 B.众数 C.中位数 D.方差
5.(2021·湖北武汉市·华中师大一附中高三其他模拟(文))为庆祝中国共产党成立100周年,A、B、C、D四个兴趣小组举行党史知识竞赛,每个小组各派10名同学参赛,记录每名同学失分(均为整数)情况,若该组每名同学失分都不超过7分,则该组为“优秀小组”,已知A、B、C、D四个小组成员失分数据信息如下,则一定为“优秀小组”的是( )
A.A组中位数为2,极差为8 B.B组平均数为2,众数为2
C.C组平均数为1,方差大于0 D.D组平均数为2,方差为3
三、 解答题
6.(2021·全国高三其他模拟(文))某精准扶贫帮扶单位为帮助定点扶贫村真正脱贫,决定在该村兴办一个年产量为1000万块的瓷砖厂,以吸纳富余劳动力,提高村民收入.已知瓷砖的质量以某质量指标值t(单位:分,t∈[0,100])为衡量标准,为估算其经济效益,该瓷砖厂进行了试产,并从中随机抽取了100块瓷砖,进行了统计,其统计结果如表所示:
质量指标值t
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
[80,90)
[90,100]
频数
2
13
21
25
24
11
4
试利用样本分布估计总体分布的思想解决下列问题(注:每组数据取区间的中点值).
(1)在一天内抽检瓷砖,若出现了瓷砖的质量指标值t在区间内,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,其中近似为样本平均数,s近似为样本的标准差,并已求得s≈14.若某天抽检到的瓷砖有1块的t值为20分,则从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(2)已知每块瓷砖的质量指标值t与等级及纯利润y(单位:元)的关系如表所示:
质量指标值t
[0,40)
[40,60)
[60,80)
[80,90)
[90,100]
产品等级
次品
三级
二级
一级
特级
纯利润(元/块)
﹣10
1
3
5
10
假定该瓷砖厂所生产的瓷砖都能销售出去,且瓷砖厂的总投资为3000万元(含引进生产线、兴建厂房等一切费用在内),问:该厂能否在一年之内通过生产并销售瓷砖收回投资?试说明理由.
7.(2021·贵州省思南中学高三月考(理))电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了名观众进行调查.如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.附表:
参考公式
(1)根据已知条件完成下面的列联表,并据此资料判断是否有的把握认为“体育迷”与性别有关?
非体育迷
体育迷
合计
男
女
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取名观众,抽取次,记被抽取的名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求的分布列及期望
随机事件和样本空间
一、选择题
1.(2021·全国高三专题练习)为了了解参加学校体育节的1200名学生的身高情况,从中抽取40名运动员进行测量.下列说法正确的是( )
A.总体是1200名学生 B.个体是每一名运动员
C.40名学生的身高是一个个体 D.样本容量是40
2.(2021·广西河池市·高三期末(文))高校毕业生就业关乎千家万户.在年月日新疆自治区政府新闻办召开的疫情防控工作新闻发布会上,自治区人力资源和社会保障厅党组副书记、厅长热合满江·达吾提介绍,在当前疫情防控形势下﹐我区以离校未就业高校毕业生为重点﹐优化就业服务,调整工作方式方法,加大线上服务力度,助力未就业高校毕业生早就业快就业.据自治区人社厅统计,截至月日,全区近万名高校毕业生实现就业.其中区属普通高校毕业生万人,实现就业人,就业率;内地高校新疆籍毕业生返疆报到登记人,实现就业人,就业率约,与去年同期基本持平.则的值约为( )
A. B. C. D.
3.(2020·嫩江市高级中学高三月考(理))下列说法正确的是( )
A.为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民,对其该天的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间是总体容量
B.频率分布直方图的纵坐标是频率
C.汽车的重量和汽车每消耗1L汽油所行驶的平均路程成负相关
D.系统抽样由于可能要剔除一些数据,所以总体中每个个体抽到的机会可能不相等
4.(2020·全国高三专题练习)某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题1:你的手机尾号是不是奇数?问题2:你是否满意物业的服务?调查者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不要做由于问题的答案只有“是”和“否”,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案.已知某小区80名业主参加了问卷,且有47名业主回答了“是”,由此估计本小区对物业服务满意的百分比大约为( )
A.85% B.75% C.63.5% D.67.5%
5.(2020·全国高三其他模拟(文))造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治,经济,文化的发展产生了巨大的推动作用.某小学三年级共有学生500名,随机抽查100名学生并提问中国古代四大发明,能说出两种发明的有45人,能说出3种及其以上发明的有32人,据此估计该校三级的500名学生中,对四大发明只能说出一种或一种也说不出的有( )
A.69人 B.84人 C.108人 D.115人
三、 解答题
6.(2020·四川泸州市·高三期末(文)) 是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国标准采用世卫组织设定的最宽限值,即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某试点城市环保局从该市市区2015年全年每天的监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(1)求中位数.
(2)以这15天的日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
7.(2020·重庆巴蜀中学高三月考(文))凤梨穗龙眼原产厦门,是厦门市的名果,栽培历史已有多年.龙眼干的级别按直径的大小分为四个等级,其中直径在区间为特级品,在的为一级品,在的为二级品,在的为三级品,某商家为了解某农场一批龙眼干的质量情况,随机抽取了个龙眼干作为样本(直径分布在区间),统计得到这些龙眼干的直径的频数分布表如下:
频数
1
29
7
用分层抽样的方法从样本的一级品和特级品中抽取个,其中一级品有个.
(1)求、的值,并估计这些龙眼干中特级品的比例;
(2)已知样本中的个龙眼干约克,该农场有千克龙眼干待出售,商家提出两种收购方案:
方案A:以元/千克收购;
方案B:以级别分装收购,每袋个,特级品元/袋、一级品元/袋、二级品元/袋、三级品元/袋.用样本的频率分布估计总体分布,哪个方案农场的收益更高?并说明理由.
互斥事件和独立事件
一、选择题
1.(2020·全国高三专题练习(文))从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( )
A.至少有一个黑球与都是黑球 B.至少有一个黑球与至少有一个红球
C.恰好有一个黑球与恰好有两个黑球 D.至少有一个黑球与都是红球
2.(2020·全国高三专题练习(文))甲、乙两人下棋,两人下成和棋的概率为,甲获胜的概率是,则甲不输的概率为( )
A. B. C. D.
3.(2020·全国高三专题练习(文))设A与B是互斥事件,A,B的对立事件分别记为,,则下列说法正确的是( )
A.与互斥 B.与互斥
C. D.
4.(2020·全国高三专题练习(文))根据某医疗研究所的调查,某地区居民血型的分布为型,型,型,型.现有一血液为型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )
A. B.
C. D.
5.(2021·河南焦作市·高三其他模拟(文))人类通常有O,A,B,AB四种血型,某一血型的人能给哪些血型的人输血,是有严格规定的,输血法则可归结为4条:①X→X;②O→X;X→AB;④不满足上述3条法则的任何关系式都是错误的(其中X代表O,A,B,AB中某种血型,箭头左边表示供血者,右边表示受血者).已知我国O,A,B,AB四种血型的人数所占比例分别为41%,28%,24%,7%,在临床上,按照规则,若受血者为A型血,则一位供血者不能为这位受血者正确输血的概率为( )
A.0.27 B.0.31 C.0.42 D.0.69
二、解答题
6.(2020·全国高三其他模拟(理))随着我国人民生活条件持续改善,国民身体素质明显增强,人均预期寿命不断延长,人民生产生活中驾车出行的需求持续增长,因此许多人呼吁放宽学驾年龄2020年10月22日,公安部在新闻发布会上宣布,取消申请小型汽车、小型自动挡汽车、轻便摩托车驾驶证70周岁的年龄上限,为了了解70周岁以上人员对考取小型汽车驾照的态度,某研究单位从一个大型社区70周岁以上的人员中随机抽取了360人进行调研,整理数据,得到如下表格:
男性人数
女性人数
持“积极响应”态度
180
60
持“不积极响应”态度
60
60
(1)按照性别及对考取小型汽车驾照的态度,采用分层抽样的方法从参与调研的人员中抽取36人进行深入调研.
①求抽取的男性中持“积极响应”态度和女性中持“不积极响应”态度的人数;
②从抽取的持“不积极响应”态度的人员中随机抽取2人,记抽到的男性人数为,求的分布列和数学期望.
(2)以样本的频率估计概率,从该大型社区70周岁以上的人员中随机抽取4人,求抽取的4人中至少有2人持“积极响应”态度的概率.
7.(2021·福建厦门市·高三二模)足球比赛中规定,若双方在进行了90分钟激战和加时赛仍然无法分出胜负,则采取点球大战的方式决定胜负,点球大战规则如下:两队应各派5名队员,双方轮流踢,如果在踢满5轮前,一队的进球数已多于另一队踢满5次时可能射中的球数,则不需再踢,若5轮之后双方进球数相同,则继续点球,直到出现某一轮结束时,一方踢进且另一方未踢进时比赛结束,现有甲乙两支球队进行点球大战,每支球队每次点球进球的概率均为,每轮点球中,两队进球与否互不影响,各轮结果也互不影响.
(1)最少进行几轮比赛能分出胜负?并求相应概率:
(2)求至少进行5轮比赛才能分出胜负的概率.
相关试卷
这是一份考点07 函数应用-备战2022年高考数学一轮复习考点针对训练(江苏专用)(原卷版),共7页。试卷主要包含了已知,.,已知函数.等内容,欢迎下载使用。
这是一份考点13 统计与概率-备战2022年高考数学一轮复习考点针对训练(江苏专用)(解析版),共39页。
这是一份考点08 平面向量-备战2022年高考数学一轮复习考点针对训练(江苏专用)(原卷版),共9页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。