河北省邢台市“五岳联盟”2022届高三上学期10月联考 数学练习题
展开邢台市“五岳联盟”2022届高三上学期10月联考
数学
注意事项:
1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.本试卷主要考试内容:人教A版必修1、4、5。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A. B.
C. D.
2.若向量,,,则( )
A. B. C. D.
3.如图,一个“心形”由两个函数的图象构成,则“心形”上部分的函数解析式可能为( )
A. B. C. D.
4.的内角A,B,C的对边分别为a,b,c.已知,则( )
A. B. C. D.
5.在等差数列中,,,则的取值范围是( )
A. B. C. D.
6.将函数的图象向左平移个单位长度后,得到函数的图象,则( )
A.为奇函数 B.的图象关于直线对称
C.的图象关于点对称 D.在上单调递减
7.函数的最小值为( )
A. B. C.4 D.
8.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,竣工1周后室内甲醛浓度为6.25,3周后室内甲醛浓度为1,且室内甲醛浓度(单位:)与竣工后保持良好通风的时间t()(单位:周)近似满足函数关系式,则该文化娱乐场所竣工后的甲醛浓度若要达到安全开放标准,至少需要放置的时间约为( )
A.5周 B.6周 C.7周 D.8周
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.设表示不大于x的最大整数,已知集合,,则( )
A. B.
C. D.
10.下列函数中,定义域与值域相同的是
A. B.
C. D.
11.若,则( )
A. B.
C. D.
12.已知函数的定义域为,,,当时,,则( )
A.
B.的图象关于直线对称
C.当时,
D.函数有4个零点
三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.设向量,均为单位向量,且,则___________.
14.若,则___________.
15.写出一个同时具有下列四个性质的函数___________.
①定义域为;②单调递增;③;④.
16.一张B4纸的厚度为0.093,将其对折后厚度变为,第2次对折后厚度变为,…,第n次对折后厚度变为,则___________,数列的前n项和为____________.(本题第一空2分,第二空3分)
四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.
17.(10分)
如图,在梯形中,.
(1)用,表示,,;
(2)若,且,求的大小.
18.(12分)
已知函数(,)的部分图象如图所示.
(1)求的解析式;
(2)把的图象上所有点的横坐标伸长到原来的m()倍(纵坐标不变)后,得到函数的图象,若在上有最大值,求m的取值范围.
19.(12分)
已知数列的前n项和为,且.数列的前n项积为,且.
(1)求,的通项公式;
(2)求数列的前n项和.
20.(12分)
已知函数.
(1)若,求;
(2)当时,讨论函数的零点个数.
21.(12分)
如图,点O在点P的正东方向,现有一个圆形音乐喷泉,点O为喷泉中心,用无人机于点P正上空的点处,测得点O的俯角为,点B的俯角为,P,A,O,B四点共线,A,B均在圆O上,且.已知圆O的面积为平方米,且米.
(1)求无人机的飞行高度;
(2)如图,现以A,M,N三点为顶点在音乐喷泉内建造三条排水暗渠,已知暗渠造价为1000元/米,且建造暗渠的预算资金为35000元.若要求,,成等差数列,试问完成三条排水暗渠的建造是否有可能会超预算?说明你的理由.
22.(12分)
已知函数满足.
(1)试问是否存在,使得函数为奇函数?若存在,求a的值;若不存在,请说明理由.
(2)若,,,求m的取值范围.
高三上学期10月联考
数学参考答案
1.B 【解析】本题考查集合的补集,考查数学运算的核心素养.
因为,所以,故.
2.B 【解析】本题考查平面向量的共线问题,考查数学运算的核心素养.
因为,所以,解得.
3.C 【解析】本题考查函数的图象与函数的解析式,考查读图能力与逻辑推理的核心素养.
由图可知,“心形”关于y轴对称,所以上部分的函数为偶函数,排除B,D.又“心形”函数的最大值为1,且,排除A.故选C.
4.A 【解析】本题考查正弦、余弦定理的应用,考查数学运算的核心素养.
由正弦定理可得,整理得,又由余弦定理可知,所以,解得.
5.A 【解析】本题考查等差数列的通项公式,考查逻辑推理与数学运算的核心素养.
设公差为d,因为,,所以,即,从而.
6.D 【解析】本题考查三角函数的图象及其性质,考查逻辑推理的核心素养.
由题意可知,则不是奇函数,所以A错误;因为,,所以B,C均错误.故选D.
7.C 【解析】本题考查基本不等式的应用,考查逻辑推理与数学运算的核心素养.
因为,当且仅当,即时,等号成立,
所以,当且仅当,即时,等号成立.故的最小值为4.
8.B 【解析】本题考查函数的实际应用,考查数学建模与数学运算的核心素养.
由题意可知,,,,解得.设该文化娱乐场所竣工后放置周后甲醛浓度达到安全开放标准,则,整理得,因为,所以,即.故至少需要放置的时间约为6周.
9.ABD 【解析】本题考查不等式的解集与集合的运算,考查数学抽象与数学运算的核心素养.
因为,所以,所以.
因为,所以.
因为,,
所以,.
10.BCD 【解析】本题考查函数的定义域与值域,考查数学抽象与逻辑推理的核心素养.
的定义域为,值域为.
的定义域和值域均为.
的定义域和值域均为.
的定义域为,因为,且,所以的值域为,则的值域为.
11.BC 【解析】本题考查三角恒等变换,考查数学运算的核心素养.
因为,所以,则,
所以,,
因为,所以,
即,
所以,
则,
故.
12.ACD 【解析】本题考查函数的综合,考查数学抽象与逻辑推理的核心素养.
因为,且,所以,
所以,所以,A正确.
因为,所以的图象关于点对称,B错误.
当时,,.
因为的图象关于点对称,的定义域为,所以,
所以,故当时,,C正确.
由,得,因为的值域为,所以由得,作出,的部分图象,如图所示.由图可知,它们有4个交点,故函数有4个零点,D正确.
13.-7 【解析】本题考查平面向量的数量积,考查数学运算的核心素养.
因为,所以,所以.
14.9 【解析】本题考查三角恒等变换与函数的解析式,考查数学运算与数学抽象的核心素养.
因为,所以,则.
15.(答案不唯一,只要满足(,,)即可) 【解析】本题为开放题,考查基本初等函数的性质,考查数学抽象与逻辑推理的核心素养.
结合前面三个性质及对数函数的性质可以得出的解析式为(,),再根据最后一个性质可得.
16.; 【解析】本题考查数列的综合应用,考查逻辑推理、数学运算的核心素养及化归与转化的数学思想.
因为每对折一次,纸张的厚度增加一倍,所以数列是首项为0.186,公比为2的等比数列,
所以.
因为,所以,
故的前n项和
.
17.解:(1),·····································································1分
,·············································································2分
. ··············································································4分
(2)因为,,所以.································································5分
因为,··········································································7分
且,所以,······································································8分
解得,··········································································9分
故. ···········································································10分
18.解:(1)由图可知,·······························································1分
则,解得. ·······································································3分
将点代入,得(),·······························································4分
因为,所以,····································································5分
故的解析式为. ···································································6分
(2)依题意可得. ································································8分
因为在上有最大值,且当时,,······················································9分
所以,·········································································11分
又,所以,即m的取值范围是.·······················································12分
19.解:(1)当时,;································································1分
当时,.·········································································2分
经检验,当时,满足,因此.·························································3分
当时,;当时,.··································································5分
当时,满足,因此. ································································6分
(2)由(1)知,
,·············································································7分
,·············································································8分
两式相减得,····································································9分
·············································································10分
,············································································11分
故. ···········································································12分
20.解:(1)∵,,·································································1分
∴,···········································································3分
故. ············································································5分
(2)当时,,···································································6分
,且在上单调递增,·······························································7分
由,得或.·······································································8分
当时,方程只有1个解,的零点个数为1;···············································9分
当时,方程与各有1个解,且这2个解不相等,的零点个数为2;······························10分
当时,方程只有1个解,的零点个数为1.···············································11分
综上,当时,的零点个数为1;当时,的零点个数为2.·····································12分
21.解:(1)设无人机的飞行高度为h米,圆形音乐喷泉的半径为r米,
由题意可知,,则. ································································1分
∵,∴,········································································2分
则,,··········································································3分
则,故无人机的飞行高度为12米. ·····················································4分
(2)∵,,成等差数列,
∴,则.·········································································5分
设,则,. ·······································································6分
由正弦定理,可得
(米),(米),
(米),········································································8分
∴(米).·······································································10分
∵,∴,∴,
则,··········································································11分
∵,∴完成三条排水暗渠的建造有可能会超预算.········································12分
22.解:(1)由,得,································································1分
根据这两个等式,消去得.···························································3分
因此(),······································································4分
故存在,使得函数为奇函数.·························································5分
(2)设函数,则.
当或时,;当时,.································································6分
因为,所以.······································································7分
因为,,,
所以对恒成立,···································································8分
所以对恒成立.···································································9分
设函数(),令(),
则, ··········································································10分
当且仅当,即时,等号成立,此时取得最小值,·········································11分
故,m的取值范围为. ······························································12分
[注]另外,本题中的最小值也可以用求导的方法求得,且的极小值点为.
2024届河北省邢台市五岳联盟高三上学期第四次月考数学试题含答案: 这是一份2024届河北省邢台市五岳联盟高三上学期第四次月考数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
河北省邢台市五岳联盟2024届高三上学期第四次月考数学试卷含解析: 这是一份河北省邢台市五岳联盟2024届高三上学期第四次月考数学试卷含解析,共43页。
河北省邢台市“五岳联盟”部分重点学校2022届高三上学期期中考试数学试题含答案: 这是一份河北省邢台市“五岳联盟”部分重点学校2022届高三上学期期中考试数学试题含答案,文件包含数学答案pdf、数学试题pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。