所属成套资源:【高考数学之解题思路培养】高考数学一轮复习解答题拿分秘籍(全国通用版)
专题04 圆锥曲线定值问题(原卷版)-【高考数学之解题思路培养】(全国通用版)学案
展开
这是一份专题04 圆锥曲线定值问题(原卷版)-【高考数学之解题思路培养】(全国通用版)学案,共14页。学案主要包含了例题讲解,实战练习等内容,欢迎下载使用。
解析几何专题四:圆锥曲线定值问题一、必备秘籍在解析几何中,有些几何量,如斜率、距离、面积、比值、角度等基本量与参变量无关,这类问题统称为③定值问题.对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值。常考题型:①与面积有关的定值问题;②与角度有关的定值问题;③与比值有关的定值问题;④与参数有关的定值问题;⑤与斜率有关的定值问题二、例题讲解1.(2021·安徽高三其他模拟(理))已知椭圆的离心率为,过点.(1)求椭圆的标准方程;(2)设点、分别是椭圆的左顶点和上顶点,、为椭圆上异于、的两点,满足,求证:面积为定值. 2.(2021·全国高三专题练习)双曲线的左顶点为,右焦点为,动点在上.当时,.(1)求的离心率;(2)若在第一象限,证明:. 3.(2021·全国)已知椭圆,抛物线与椭圆有相同的焦点,抛物线的顶点为原点,点是抛物线的准线上任意一点,过点作抛物线的两条切线、,其中、为切点,设直线,的斜率分别为,.(1)求抛物线的方程及的值;(2)若直线交椭圆于两点,、分别是、的面积,求的最小值. 4.(2021·江西上饶市·高三二模(理))如图,在平面直角坐标系中,为半圆的直径,为圆心,且,,为线段的中点;曲线过点,动点在曲线上运动且保持的值不变.(1)求曲线的方程;(2)过点的直线与曲线交于、两点,与所在直线交于点,,,求证:为定值. 5.(2021·安徽合肥·高三月考(文))已知抛物线上的动点M到直线的距离比到抛物线的焦点的距离大.(1)求抛物线的标准方程;(2)设点是直线上的任意一点,过点的直线与抛物线交于两点,记直线的斜率分别为,证明:为定值. 三、实战练习1.(2021·江苏南京·高三开学考试)在平面直角坐标系中,椭圆:的左、右顶点分别为,.是椭圆的右焦点,且,.(1)求椭圆的方程;(2)不过点的直线交椭圆于,两点,记直线,,的斜率分别为,,,若,证明直线过定点,并求出定点的坐标. 2.(2021·全国高三月考)在平面直角坐标系中,焦点在轴上的椭圆和双曲线有共同的顶点(2,0),且双曲线的焦点到渐近线的距离为,双曲线的渐近线与椭圆的一个公共点的横坐标为.(1)求双曲线的离心率;(2)求椭圆的方程;(3)过椭圆的左焦点作直线(直线的斜率不为零)与椭圆交于,两点,弦的垂直平分线交轴于点,求证:为定值. 3.(2021·湖北武汉·高三开学考试)已知椭圆:的离心率为,点是椭圆短轴的一个四等分点.(1)求椭圆的标准方程;(2)设过点A且斜率为的动直线与椭圆交于,两点,且点,直线,分别交:于异于点的点,,设直线的斜率为,求实数,使得,恒成立. 4.(2021·黑龙江实验中学高三三模(文))在平面直角坐标系中,已知椭圆:的上、下顶点分别为,,左焦点为F,左顶点为A,椭圆过点,且.(1)求椭圆C的标准方程;(2)过左焦点F且斜率为的动直线l与椭圆C交于P、Q两点,试问在x轴上是否存在一个定点M,使得轴为的平分线?若存在,求出点M的坐标;若不存在,请说明理由. 5.(2021·湖北高三开学考试)在平面直角坐标系中,已知椭圆∶()的左、右焦点分别为,是上一点,且与轴垂直.(1)求椭圆的方程;(2)若过点的直线交于两点,证明∶为定值. 6.(2021·双峰县第一中学高三开学考试)椭圆的右顶点为,上顶点为,为坐标原点,直线的斜率为,的面积为1.(1)求椭圆的标准方程;(2)椭圆上有两点,(异于椭圆顶点,且与轴不垂直),证明:当的面积最大时,直线与的斜率之积为定值. 7.(2021·安徽安庆·高三月考(文))已知椭圆:的离心率,直线经过椭圆的左焦点.(1)求椭圆的标准方程;(2)若不经过右焦点的直线:与椭圆相交于,两点,且与圆:相切,试探究的周长是否为定值,若是求出定值;若不是请说明理由. 8.(2021·永州市第四中学高三月考)已知直线与是分别过椭圆的左,右焦点的两条相交但不重合的动直线.与椭圆相交于点,与椭圆相交于点为坐标原点.直线的斜率分别为,且满足.(1)若与x轴重合..试求椭圆E的方程:(2)在(1)的条件下,记直线.试问:是否存在定点M,N,使得为定值?若存在.求出定值和定点的坐标:若不存在,请说明理由. 9.(2021·渝中·重庆巴蜀中学高三月考)已知椭圆经过点,点为椭圆的上顶点,且直线与直线相互垂直.(1)求椭圆的方程;(2)若不垂直轴的直线过椭圆的右焦点,交椭圆于两点在轴上方),直线分别与轴交于两点,为坐标原点,求证:. 10.(2021·沙坪坝·重庆八中)在平面直角坐标系中,设点是椭圆上一点,以M为圆心的一个半径的圆,过原点作此圆的两条切线分别与椭圆交于点.(1)若点在第一象限且直线互相垂直,求圆的方程;(2)若直线的斜率都存在,且分别记为.求证:为定值;(3)探究是否为定值,若是,则求出的最大值;若不是,请说明理由. 11.(2021·沙坪坝·重庆南开中学)已知椭圆的左右焦点为、,离心率,过圆上一点(在轴左侧)作该圆的切线,分别交椭圆于、两点,交圆于两点(如图所示).当切线与轴垂直时,的面积为.(1)求椭圆的标准方程;(2)(ⅰ)求的面积的最大值;(ⅱ)求证:为定值,并求出这个定值. 12.(2021·上海高三模拟预测)已知椭圆的一焦点与短轴的两个端点组成的三角形是等边三角形,直线与椭圆的两交点间的距离为8.(1)求椭圆的方程;(2)如图,设是椭圆上的一动点,由原点向圆引两条切线,分别交椭圆于点,,若直线,的斜率均存在,并分别记为,,求证:为定值;(3)在(2)的条件下,试问是否为定值?若是,求出该值;若不是,请说明理由. 13.(2021·全国高考真题)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和. 14.(2021·广东高三月考)已知双曲线的左、右焦点分别为,双曲线C的右顶点A在圆上,且.(1)求双曲线的标准方程;(2)动直线与双曲线恰有1个公共点,且与双曲线的两条渐近线分别交于点,问为坐标原点)的面积是否为定值?若为定值,求出该定值;若不为定值,试说明理由. 15.(2021·江苏淮安·高三三模)已知双曲线的离心率为2,为双曲线的右焦点,为双曲线上的任一点,且点到双曲线的两条渐近线距离的乘积为.(1)求双曲线的方程;(2)设过点且与坐标轴不垂直的直线与双曲线相交于点,,线段的垂直平分线与轴交于点,求的值. 16.(2021·河南商丘·高三月考(文))在直角坐标系中,已知定点,定直线,动点到直线的距离比动点到点的距离大.记动点的轨迹为曲线.(1)求的方程,并说明是什么曲线?(2)设在上,不过点的动直线与交于,两点,若,证明:直线恒过定点. 17.(2021·宁波市北仑中学高三开学考试)如图,已知,直线,是平面上的动点,过点作的垂线,垂足为点,且.(1)求动点的轨迹的方程;(2)过点的直线交轨迹于两点,交直线于点;①已知,求的值;②求的最小值. 19.(2021·安徽蚌埠·高三开学考试(理))已知抛物线的焦点为,点为坐标原点,直线过定点(其中,)与抛物线相交于两点(点位于第一象限.(1)当时,求证:;(2)如图,连接并延长交抛物线于两点,,设和的面积分别为和,则是否为定值?若是,求出其值;若不是,请说明理由. 20.(2021·山东高三三模)已知三点,为曲线上任意一点,满足.(1)求曲线的方程;(2)已知点,为曲线上的不同两点,且,,为垂足,证明:存在定点,使为定值.
相关学案
这是一份专题04 圆锥曲线定值问题-【解题思路培养】2022年高考数学一轮复习解答题拿分秘籍(全国通用版)学案,文件包含专题04圆锥曲线定值问题原卷版-解题思路培养2022年高考数学一轮复习解答题拿分秘籍全国通用版docx、专题04圆锥曲线定值问题解析版-解题思路培养2022年高考数学一轮复习解答题拿分秘籍全国通用版docx等2份学案配套教学资源,其中学案共51页, 欢迎下载使用。
这是一份专题04 圆锥曲线定值问题-【解题思路培养】2022年高考数学一轮复习解答题拿分秘籍(全国通用版)学案,文件包含专题04圆锥曲线定值问题原卷版-解题思路培养2022年高考数学一轮复习解答题拿分秘籍全国通用版docx、专题04圆锥曲线定值问题解析版-解题思路培养2022年高考数学一轮复习解答题拿分秘籍全国通用版docx等2份学案配套教学资源,其中学案共51页, 欢迎下载使用。
这是一份专题03 圆锥曲线面积问题(原卷版)-【高考数学之解题思路培养】(全国通用版)学案,共10页。学案主要包含了必备秘籍,例题讲解,实战练习等内容,欢迎下载使用。