专题22概率(理)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案
展开
这是一份专题22概率(理)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案,共18页。学案主要包含了椭圆,双曲线,抛物线,直线与圆锥曲线的位置关系,弦长问题等内容,欢迎下载使用。
1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.
即:。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.
2、椭圆的几何性质:
二、双曲线
1、定义:平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.即:。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
2、双曲线的几何性质:
5、实轴和虚轴等长的双曲线称为等轴双曲线.
三、抛物线
1、定义:平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.
2、抛物线的几何性质:
3、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.
4、关于抛物线焦点弦的几个结论:
设为过抛物线焦点的弦,,直线的倾斜角为,则
⑴ ⑵
⑶ 以为直径的圆与准线相切;
⑷ 焦点对在准线上射影的张角为
⑸
四、直线与圆锥曲线的位置关系
2.直线与圆锥曲线的位置关系:
⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到。
若=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;
当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
②.若,设。.时,直线和圆锥曲线相交于不同两点,相交。
b.时,直线和圆锥曲线相切于一点,相切。c.时,直线和圆锥曲线没有公共点,相离。
五、弦长问题:
直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求,根据根与系数的关系,进行整体代入。即当直线与圆锥曲线交于点,时,则
==
==
1.2020年全国统一高考数学试卷(理科)(新课标Ⅰ)
已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
2.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)
已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
专题22概率(理)知识点与大题16道高考真题(解析版)
一、椭圆
1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.
即:。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.
2、椭圆的几何性质:
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
且
且
顶点
、
、
、
、
轴长
短轴的长 长轴的长
焦点
、
、
焦距
对称性
关于轴、轴、原点对称
离心率
e越小,椭圆越圆;e越大,椭圆越扁
二、双曲线
1、定义:平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.即:。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
2、双曲线的几何性质:
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
或,
或,
顶点
、
、
轴长
虚轴的长 实轴的长
焦点
、
、
焦距
对称性
关于轴、轴对称,关于原点中心对称
离心率
,越大,双曲线的开口越阔
渐近线方程
5、实轴和虚轴等长的双曲线称为等轴双曲线.
三、抛物线
1、定义:平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.
2、抛物线的几何性质:
标准方程
范围
顶点
对称轴
轴
轴
焦点
准线方程
离心率
,越大,抛物线的开口越大
焦半径
通径
过抛物线的焦点且垂直于对称轴的弦称为通径:
焦点弦长
公式
3、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.
4、关于抛物线焦点弦的几个结论:
设为过抛物线焦点的弦,,直线的倾斜角为,则
⑴ ⑵
⑶ 以为直径的圆与准线相切;
⑷ 焦点对在准线上射影的张角为
⑸
四、直线与圆锥曲线的位置关系
2.直线与圆锥曲线的位置关系:
⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到。
若=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;
当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。
②.若,设。.时,直线和圆锥曲线相交于不同两点,相交。
b.时,直线和圆锥曲线相切于一点,相切。c.时,直线和圆锥曲线没有公共点,相离。
五、弦长问题:
直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求,根据根与系数的关系,进行整体代入。即当直线与圆锥曲线交于点,时,则
==
==
1.2020年全国统一高考数学试卷(理科)(新课标Ⅰ)
已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
2.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)
已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
3.2020年全国统一高考数学试卷(理科)(新课标Ⅲ)
已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
4.2020年江苏省高考数学试卷
在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.
(1)求△AF1F2的周长;
(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;
(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.
5.2020年新高考全国卷Ⅰ数学高考试题(山东)
已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
6.2020年天津市高考数学试卷
已知椭圆的一个顶点为,右焦点为,且,其中为原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.
7.2020年北京市高考数学试卷已知椭圆过点,且.
(Ⅰ)求椭圆C的方程:
(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.
8.2020年海南省高考数学试卷(新高考全国Ⅱ卷)
已知椭圆C:过点M(2,3),点A为其左顶点,且AM的斜率为 ,
(1)求C的方程;
(2)点N为椭圆上任意一点,求△AMN的面积的最大值.
9.2020年浙江省高考数学试卷
如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).
(Ⅰ)若,求抛物线的焦点坐标;
(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
10.2019年浙江省高考数学试卷
如图,已知点为抛物线的焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记的面积为.
(1)求的值及抛物线的准线方程;
(2)求的最小值及此时点的坐标.
11.2019年全国统一高考数学试卷(理科)(新课标Ⅰ)
已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若,求|AB|.
12.2019年全国统一高考数学试卷(理科)(新课标Ⅱ)
已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
13.2019年全国统一高考数学试卷(理科)(新课标Ⅲ)
已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
14.2019年北京市高考数学试卷(理科)
已知抛物线C:x2=−2py经过点(2,−1).
(Ⅰ)求抛物线C的方程及其准线方程;
(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
15.2019年天津市高考数学试卷(理科)
设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
16.2018年全国普通高等学校招生统一考试理数(全国卷II)
设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
且
且
顶点
、
、
、
、
轴长
短轴的长 长轴的长
焦点
、
、
焦距
对称性
关于轴、轴、原点对称
离心率
e越小,椭圆越圆;e越大,椭圆越扁
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
或,
或,
顶点
、
、
轴长
虚轴的长 实轴的长
焦点
、
、
焦距
对称性
关于轴、轴对称,关于原点中心对称
离心率
,越大,双曲线的开口越阔
渐近线方程
标准方程
范围
顶点
对称轴
轴
轴
焦点
准线方程
离心率
,越大,抛物线的开口越大
焦半径
通径
过抛物线的焦点且垂直于对称轴的弦称为通径:
焦点弦长
公式
相关学案
这是一份专题32概率(理)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案,共27页。
这是一份专题31概率(文)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案,共15页。
这是一份专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案,共29页。学案主要包含了名师点睛等内容,欢迎下载使用。