搜索
    上传资料 赚现金
    英语朗读宝

    专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案

    专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案第1页
    专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案第2页
    专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案

    展开

    这是一份专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案,共29页。学案主要包含了名师点睛等内容,欢迎下载使用。
    专题31概率(文)知识点与大题16道高考真题(解析版)
    知识点一:常见的概率类型与概率计算公式;
    类型一:古典概型;
    1、 古典概型的基本特点:
    (1) 基本事件数有限多个;
    (2) 每个基本事件之间互斥且等可能;
    2、 概率计算公式:
    A事件发生的概率;
    类型二:几何概型;
    1、 几何概型的基本特点:
    (1) 基本事件数有无限多个;
    (2) 每个基本事件之间互斥且等可能;
    2、 概率计算公式:
    A事件发生的概率;
    注意:
    (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比;
    (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪一个是等可能的;
    例如:等腰中,角C=,则:
    (1) 若点M是线段AB上一点,求使得的概率;
    (2) 若射线CA绕着点C向射线CB旋转,且射线CA与线段AB始终相交且交点是M,求使得的概率;
    解析:第一问中明确M为AB上动点,即点M是在AB上均匀分布,所以这一问应该是长度之比,所求概率:;
    而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:;
    知识点二:常见的概率计算性质;
    类型一:事件间的关系与运算;
    A+B(和事件):表示A、B两个事件至少有一个发生;
    (积事件):表示A、B两个事件同时发生;
    (对立事件):表示事件A的对立事件;
    类型二:复杂事件的概率计算公式;
    1、 和事件的概率:

    (1)特别的,若A与B为互斥事件,则:

    (2)对立事件的概率公式:

    知识点三:求解一般概率问题的步骤;
    第一步:确定事件的性质:等可能事件、互斥事件、相互独立事件、n次独立重复实验等;
    第二步:确定事件的运算:和事件、积事件、条件概率等;
    第三步:运用相应公式,算出结果;


    知识点三:常见的统计学数字特征量及其计算;
    特征量一:平均数(数学期望)
    计算公式一:;
    计算公式二:;

    特征量二:中位数
    将所有的数从大到小排或者从小到大排,若共有奇数个数,则正中间的那个数叫做这一列数的中位数;若共有偶数个数,那么正中间那两个数的平均数叫做这一列数的中位数。

    特征量三:众数
    将所有数中出现次数最多且次数超过1次的数叫做这一列数的众数。一列数的众数可以有多个,也可以没有。

    特征量四:方差
    方差反映一组数或者一个统计变量的稳定程度,方差越小数值越稳定,方差越大则数值波动越大。
    计算公式一:;
    计算公式二:;
    计算公式三:;

    知识点四:简单的统计学知识;

    问题一:统计学中的简单的抽样方法;
    方法一:简单随机抽样;
    1、 基本原理:根据研究目的选定总体,首先对总体中所有的观察单位编号,遵循随机原则,采用不放回抽取方法,从总体中随机抽取一定数量观察单位组成样本。
    2、 具体做法:①随机数字法 ; ② 抽签法;
    3、 优缺点分析:
    优点:基本原理比较简单;
    当总体容量不大时比较方便;
    抽样误差的计算较方便;
    缺点:对所有观察单位编号,当数量大时,有难度;
    方法二:系统抽样;
    1、 基本原理:先将总体的观察单位按某顺序号等分成n个部分再从第一部分随机抽第k号观察单位,依次用相等间隔,机械地从每一部分各抽取一个观察单位组成样本;
    2、 优缺点分析:
    优点:抽样方法简便,特别是容量比较大的时候;
    易得到一个按比例分配的样本,抽样误差较小;
    缺点:仍需对每个观察单位编号;
    当观察单位按顺序有周期趋势或单调性趋势时,产生明显偏性;
    方法三:分层抽样;
    1、 基本原理:先将总体按某种特征分成若干层,再从每一层内随机抽取一定数量的观察单位,合起来组成样本。
    2、 具体做法:
    第一步:计算每一层个体数与总体容量的比值;
    第二步:用样本容量分别乘以每一层的比值,得出每层应抽取的个体数;
    第三步:用简单随机抽样的方法产生样本;
    3、 优缺点分析:
    优点:在一定程度上控制了抽样误差,尤其是最优分配法;
    缺点:总体必须要能分成差别比较大的几层时才能用,局限性比较大;
    总结:以上三种抽样方法的共同特征是每个个体被抽中的可能性相同;

    知识点五:常用的几个统计学图表;

    图表一:频率分布直方图与频率分布折线图;
    1、 说明几个基本概念:
    (1) 频数:符合某一条件的个体个数;
    (2) 频率:频率=;(在必要情况下,可以近视的看作概率;所有组的频率之和是1;)
    2、 认识频率分布直方图:

    (1) 横标是分组的情况;
    (2) 纵标不是频率,而是频率/组距;小方框的面积才是频率;所有的面积和为1;
    3、 画频率分布直方图:
    第一步:求极差;
    第二步:分组,确定组距;
    第三步:列频率分布表;
    第四步:作图;
    4、 画频率分布折线图:
    将频率分布直方图中每个方框的顶边的中点用直线连起来形成的折线图;
    5、 利用频率分布直方图估计样本的统计学数字特征量:
    (1) 中位数:取图中方框面积和达到时的横坐标;
    (2) 众数:取最高的那个方框的中点横坐标;
    (3) 平均数:;其中表示第k组的中点横坐标,表示第k组的频率;
    (4) 方差:;
    图表二:茎叶图;
    定义:若数据为整数,一般用中间的数表示个位数以上的部分,两边的数表示个位数字;若数据是小数,一般用中间的数表示整数部分,两边的数表示小数部分形成的图表;



    知识点六:变量间的相互关系与统计案例;
    1、相关关系的分类:
    从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关。
    2、线性相关:
    从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线。
    3.最小二乘法求回归方程:
    (1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫最小二乘法.
    (2)回归方程:两个具有线性相关关系的变量的一组数据:
    (x1,y1),(x2,y2),…,(xn,yn),其回归方程为=x+,




    其中,b是回归方程的斜率,a是在y轴上的截距.
    4.样本相关系数:
    r= ,用它来衡量两个变量间的线性相关关系.
    (1)当r>0时,表明两个变量正相关;
    (2)当r<0时,表明两个变量负相关;
    (3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.
    6.独立性检验:
    (1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.
    (2)列出的两个分类变量的频数表,称为列联表.
    (3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:

    y1
    y2
    总计
    x1
    a
    b
    a+b
    x2
    c
    d
    c+d
    总计
    a+c
    b+d
    a+b+c+d
    (其中n=a+b+c+d为样本容量),可利用独立性检验判断表来判断“x与y的关系”.这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.
    附表:
    P(K2≥k)
    0.050
    0.010
    0.001
    k
    3.841
    6.635
    10.828
    注意:
    (1)越大相关性越强,反之越弱;
    (2)附表中P(K2≥k)是两个统计学变量无关的概率;

    1.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)
    为了监控某种零件的一条生产线的生产过程,检验员每隔从该生产线上随机抽取一个零件,并测量其尺寸(单位:).下面是检验员在一天内依次抽取的16个零件的尺寸:
    抽取次序
    1
    2
    3
    4
    5
    6
    7
    8
    零件尺寸
    9.95
    10.12
    9.96
    9.96
    10.01
    9.92
    9.98
    10.04
    抽取次序
    9
    10
    11
    12
    13
    14
    15
    16
    零件尺寸
    10.26
    9.91
    10.13
    10.02
    9.22
    10.04
    10.05
    9.95

    经计算得,,
    ,其中为抽取的第个零件的尺寸,.
    (1)求的相关系数,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
    (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
    (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
    (ⅱ)在之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到)附:样本的相关系数
    ,.
    【答案】(1)可以;(2)(ⅰ)需要;(ⅱ),.
    【分析】
    (1)依公式求;
    (2)(i)由,得抽取的第13个零件的尺寸在以外,因此需对当天的生产过程进行检查;(ii)剔除第13个数据,则均值的估计值为10.02,方差为0.09.
    【详解】
    (1)由样本数据得的相关系数为
    .
    由于,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.
    (2)(i)由于,
    由样本数据可以看出抽取的第13个零件的尺寸在以外,
    因此需对当天的生产过程进行检查.
    (ii)剔除离群值,即第13个数据,
    剩下数据的平均数为,
    这条生产线当天生产的零件尺寸的均值的估计值为10.02.

    剔除第13个数据,剩下数据的样本方差为

    这条生产线当天生产的零件尺寸的标准差的估计值为.
    【点睛】
    解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.
    2.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)
    海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:


    (1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
    (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

    箱产量<50kg
    箱产量≥50kg
    旧养殖法


    新养殖法


    (3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较.
    附:
    P(K2≥k)
    0.050
    0.010
    0.001
    k
    3.841
    6.635
    10.828

    【答案】(1)0.62(2)有99%的把握 (3)新养殖法优于旧养殖法
    【详解】
    试题分析:
    (1)由频率近似概率值,计算可得旧养殖法的箱产量低于50kg的频率为0.62.据此,事件A的概率估计值为0.62.
    (2)由题意完成列联表,计算K2的观测值k=≈15.705>6.635,则有99%的把握认为箱产量与养殖方法有关.
    (3)箱产量的频率分布直方图表明:新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.
    试题解析:
    (1)旧养殖法的箱产量低于50kg的频率为
    (0.012+0.014+0.024+0.034+0.040)×5=0.62.
    因此,事件A的概率估计值为0.62.
    (2)根据箱产量的频率分布直方图得列联表

    箱产量

    相关学案

    专题32概率(理)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案:

    这是一份专题32概率(理)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案,共27页。

    专题31概率(文)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案:

    这是一份专题31概率(文)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案,共15页。

    专题7概率(文)知识点与大题16道专练(基础题)(解析版)-备战2022年高考数学大题分类提升专题学案:

    这是一份专题7概率(文)知识点与大题16道专练(基础题)(解析版)-备战2022年高考数学大题分类提升专题学案,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map