考点31 古典概型(讲解) (原卷版)
展开考点31 古典概型
【思维导图】
【常见考法】
考法一 概念辨析
1.下列概率模型是古典概型的为( )
A.从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小
B.同时据两枚质地均匀的骰子,点数和为6的概率
C.近三天中有一天降雨的概率
D.10人站成一排,其中甲,乙相邻的概率
考法二 古典概型小题
1.有五条线段长度分别为,从这5条线段中任取3条,则所取3条线段能构成一三角形的概率
A. B. C. D.
2.2020年2月初,由于地叫外卖人数的猛然增多以及商家工作人员的不足,外卖骑手的配送速度饱受批评,客户给骑手的评分(满分分)也是参差不齐,现将某骑手一个上午得到的评分统计如图所示,则任取个评分,至少有个高于平均分的概率为( )
A. B. C. D.
3.甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲乙“心有灵屏”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )
A. B. C. D.
考法三古典概型解答题
1.某校从参加高一年级期中考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段,…,,,然后画出如下部分频率分布直方图.
观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从分数段选取的最高分的两人组成B组,分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.
2.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
(1)求频率分布直方图中的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.
3.年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分.根据调查数据制成如下表格和频率分布直方图.已知评分在的居民有人.
满意度评分 | ||||
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
(1)求频率分布直方图中的值及所调查的总人数;
(2)定义满意指数,若,则防疫工作需要进行大的调整,否则不需要大调整.根据所学知识判断该区防疫工作是否需要进行大调整?
(3)为了解部分居民不满意的原因,从不满意的居民(评分在、)中用分层抽样的方法抽取名居民,倾听他们的意见,并从人中抽取人担任防疫工作的监督员,求这人中仅有一人对防疫工作的评分在内的概率.
考点34 排列、组合(讲解) (原卷版): 这是一份考点34 排列、组合(讲解) (原卷版),共4页。
考点31 古典概型(练习) (原卷版): 这是一份考点31 古典概型(练习) (原卷版),共7页。
考点31 古典概型(练习) (解析版): 这是一份考点31 古典概型(练习) (解析版),共12页。