终身会员
搜索
    上传资料 赚现金

    22.1.4 第2课时 用待定系数法求二次函数的解析式课件PPT

    立即下载
    加入资料篮
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第1页
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第2页
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第3页
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第4页
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第5页
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第6页
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第7页
    22.1.4 第2课时  用待定系数法求二次函数的解析式课件PPT第8页
    还剩15页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质背景图课件ppt

    展开

    这是一份初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质背景图课件ppt,共23页。PPT课件主要包含了待定系数法,解这个方程组得,解得a-1,4a+c,-3a+c,c-5,a+b+c=1,c=-4,a-b+c=-5,b=3等内容,欢迎下载使用。
    1.会用待定系数法求二次函数的表达式.(难点)2.会根据待定系数法解决关于二次函数的相关问题.(重点)
    1.一次函数y=kx+b(k≠0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?
    2.求一次函数表达式的方法是什么?它的一般步骤是什么?
    (1)设:(表达式)(2)代:(坐标代入)(3)解:方程(组)(4)还原:(写表达式)
    问题1 (1)二次函数y=ax2+bx+c(a≠0)中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?
    (2)下面是我们用描点法画二次函数的图象所列表格的一部分:
    解: 设这个二次函数的表达式是y=ax2+bx+c,把(-3,0),(-1,0),(0,-3)代入y=ax2+bx+c得
    ①选取(-3,0),(-1,0),(0,-3),试求出这个二次函数的表达式.
    ∴所求的二次函数的表达式是y=-x2-4x-3.
    待定系数法步骤:1.设:(表达式)2.代:(坐标代入)3.解:方程(组)4.还原:(写解析式)
    这种已知三点求二次函数表达式的方法叫做一般式法.其步骤是:①设函数表达式为y=ax2+bx+c;②代入后得到一个三元一次方程组;③解方程组得到a,b,c的值;④把待定系数用数字换掉,写出函数表达式.
    一般式法求二次函数表达式的方法
    例1 一个二次函数的图象经过 (0, 1)、(2,4)、(3,10)三点,求这个二次函数的表达式.
    解: 设这个二次函数的表达式是y=ax2+bx+c,由于这个函数经过点(0, 1),可得c=1. 又由于其图象经过(2,4)、(3,10)两点,可得
    ∴所求的二次函数的表达式是
    选取顶点(-2,1)和点(1,-8),试求出这个二次函数的表达式.
    解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点(-2,1)代入y=a(x-h)2+k得
    y=a(x+2)2+1,
    再把点(1,-8)代入上式得
    a(1+2)2+1=-8,
    解得 a=-1.
    ∴所求的二次函数的表达式是y=-(x+2)2+1或y=-x2-4x-3.
    顶点法求二次函数的方法
    这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤是:①设函数表达式是y=a(x-h)2+k;②先代入顶点坐标,得到关于a的一元一次方程;③将另一点的坐标代入原方程求出a值;④a用数值换掉,写出函数表达式.
    例2 一个二次函数的图象经点 (0, 1),它的顶点坐标为(8,9),求这个二次函数的表达式.
    解: 因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数表达式为 y=a(x-8)2+9.
    解:∵(-3,0)(-1,0)是抛物线y=ax2+bx+c与x轴的交点.所以可设这个二次函数的表达式是y=a(x-x1)(x-x2).(其中x1、x2为交点的横坐标.因此得
    y=a(x+3)(x+1).
    再把点(0,-3)代入上式得
    ∴a(0+3)(0+1)=-3,
    ∴所求的二次函数的表达式是y=-(x+3)(x+1),即y=-x2-4x-3.
    选取(-3,0),(-1,0),(0,-3),试出这个二次函数的表达式.
    交点法求二次函数表达式的方法
    这种知道抛物线与x轴的交点,求表达式的方法叫做交点法.其步骤是:①设函数表达式是y=a(x-x1)(x-x2);②先把两交点的横坐标x1, x2代入到表达式中,得到关于a的一元一次方程;③将方程的解代入原方程求出a值;④a用数值换掉,写出函数表达式.
    想一想确定二次函数的这三点应满足什么条件?
    任意三点不在同一直线上(其中两点的连线可平行于x轴,但不可以平行于y轴.
    例3.已知二次函数y=ax2 + c的图象经过点(2,3)和(-1,-3),求这个二次函数的表达式.
    解:∵该图象经过点(2,3)和(-1,-3),
    ∴所求二次函数表达式为 y=2x2-5.
      已知二次函数y=ax2 + bx的图象经过点(-2,8) 和(-1,5),求这个二次函数的表达式.
    解:∵该图象经过点(-2,8)和(-1,5),
    解得a=-1,b=-6.
    ∴ y=-x2-6x.
    1.如图,平面直角坐标系中,函数图象的表达式应是 .
    注 y=ax2与y=ax2+k、y=a(x-h)2、y=a(x-h)2+k一样都是顶点式,只不过前三者是顶点式的特殊形式.
    2.过点(2,4),且当x=1时,y有最值为6,则其表达式是 .
    y=-2(x-1)2+6
    3.已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的表达式.
    解:设这个二次函数的表达式为y=ax2+bx+c.依题意得
    ∴这个二次函数的表达式为y=2x2+3x-4.
    4.已知抛物线与x轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的表达式.
    解:因为点A(-1,0),B(1,0)是图象与x轴的交点,所以设二次函数的表达式为y=a(x+1)(x-1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a=-1,所以所求抛物线的表达式为y=-(x+1)(x-1),即y=-x2+1.
    5.如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:
    (1)求抛物线的表达式;
    解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,c-4b=-19.∵对称轴是x=-3,∴ =-3,∴b=6,∴c=5,∴抛物线的表达式是y=x2+6x+5;
    (2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.
    (2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积= ×8×7=28.
    ②已知顶点坐标或对称轴或最值
    ③已知抛物线与x轴的两个交点
    用一般式法:y=ax2+bx+c
    用顶点法:y=a(x-h)2+k
    用交点法:y=a(x-x1)(x-x2) (x1,x2为交点的横坐标)
    待定系数法求二次函数解析式

    相关课件

    初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质教课ppt课件:

    这是一份初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质教课ppt课件,共29页。PPT课件主要包含了xh时y最大k,−20,直线x−2,填一填,x−62,x−62−36,练一练,−15,x0时yc,直线x1等内容,欢迎下载使用。

    数学九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质习题课件ppt:

    这是一份数学九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质习题课件ppt,共23页。PPT课件主要包含了y1<y2,y=x-32+2等内容,欢迎下载使用。

    2020-2021学年22.1.4 二次函数y=ax2+bx+c的图象和性质课文ppt课件:

    这是一份2020-2021学年22.1.4 二次函数y=ax2+bx+c的图象和性质课文ppt课件,共18页。PPT课件主要包含了配方可得,描点画图,试一试,你知道吗,用配方法,要记住公式哦,我来模仿,小试牛刀等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map