终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第10讲-函数的图象(解析版)学案

    立即下载
    加入资料篮
    第10讲-函数的图象(解析版)学案第1页
    第10讲-函数的图象(解析版)学案第2页
    第10讲-函数的图象(解析版)学案第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第10讲-函数的图象(解析版)学案

    展开

    这是一份第10讲-函数的图象(解析版)学案,共22页。
    第10讲-函数的图象
    一、 考情分析
    1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;
    2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.
    二、 知识梳理
    1.利用描点法作函数的图象
    步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.
    2.利用图象变换法作函数的图象
    (1)平移变换

    (2)对称变换
    y=f(x)的图象y=-f(x)的图象;
    y=f(x)的图象y=f(-x)的图象;
    y=f(x)的图象y=-f(-x)的图象;
    y=ax(a>0,且a≠1)的图象y=logax(a>0,且a≠1)的图象.
    (3)伸缩变换
    y=f(x)y=f(ax).
    y=f(x)y=Af(x).
    (4)翻折变换
    y=f(x)的图象y=|f(x)|的图象;
    y=f(x)的图象y=f(|x|)的图象.
    [微点提醒]
    记住几个重要结论
    (1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.
    (2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.
    (3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.
    三、 经典例题
    考点一 作函数的图象
    【例1】 作出下列函数的图象:
    (1)y=; (2)y=|log2(x+1)|; (3)y=x2-2|x|-1.
    【解析】 (1)先作出y=的图象,保留y=图象中x≥0的部分,再作出y=的图象中x>0部分关于y轴的对称部分,即得y=的图象,如图①实线部分.

    (2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.
    (3)∵y=且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图③.
    规律方法 作函数图象的一般方法
    (1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.
    (2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.
    考点二 函数图象的辨识
    【例2】 (1)(一题多解)函数y=1+x+的部分图象大致为(  )

    (2)函数y=2x2-e|x|在[-2,2]的图象大致为(  )


    【解析】  (1)法一 易知g(x)=x+为奇函数,故y=1+x+的图象关于点(0,1)对称,排除C;当x∈(0,1)时,y>0,排除A;当x=π时,y=1+π,排除B,选项D满足.
    法二 当x=1时,f(1)=1+1+sin 1=2+sin 1>2,排除A,C;又当x→+∞时,y→+∞,排除B,而D满足.
    (2)f(x)=2x2-e|x|,x∈[-2,2]是偶函数,
    又f(2)=8-e2∈(0,1),排除选项A,B;
    当x≥0时,f(x)=2x2-ex,f′(x)=4x-ex,
    所以f′(0)=-10,
    所以函数f(x)在(0,2)上有解,
    故函数f(x)在[0,2]上不单调,排除C,故选D.
    规律方法 1.抓住函数的性质,定性分析:
    (1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.
    2.抓住函数的特征,定量计算:
    从函数的特征点,利用特征点、特殊值的计算分析解决问题.
    考点三 函数图象的应用 
    【例3-1】 已知函数f(x)=x|x|-2x,则下列结论正确的是(  )
    A.f(x)是偶函数,递增区间是(0,+∞)
    B.f(x)是偶函数,递减区间是(-∞,1)
    C.f(x)是奇函数,递减区间是(-1,1)
    D.f(x)是奇函数,递增区间是(-∞,0)
    【解析】  将函数f(x)=x|x|-2x去掉绝对值得
    f(x)=
    画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上是减少的.

    【例3-2】 已知函数y=f(x)的图象是如图所示的折线ACB,且函数g(x)=log2(x+1)”,则不等式f(x)≥g(x)的解集是(  )

    A.{x|-13.
    规律方法 1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.
    2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)

    相关学案

    2024年高考数学重难点突破讲义:学案 第1讲 函数的图象与性质:

    这是一份2024年高考数学重难点突破讲义:学案 第1讲 函数的图象与性质,共10页。

    第10讲 复合函数:

    这是一份高中数学人教A版 (2019)必修 第一册全册综合学案设计,共2页。

    第10讲-函数的图象(讲义版)学案:

    这是一份第10讲-函数的图象(讲义版)学案,共11页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map