初中数学北师大版七年级上册5.3 应用一元一次方程——水箱变高了教案设计
展开
这是一份初中数学北师大版七年级上册5.3 应用一元一次方程——水箱变高了教案设计,共3页。教案主要包含了教学重点,教学难点等内容,欢迎下载使用。
1.通过分析几何问题中的数量关系,建立方程解决问题.
2.进一步体会运用方程解决问题的关键是找出等量关系.
【教学重点】
分析图形问题中的数量关系,熟练地列方程解应用题.
【教学难点】
从实际问题中抽象出数学模型的教学过程.
1.几何图形中常用的公式
(1)常用的体积公式
长方体的体积=长×宽×高;
正方体的体积=棱长×棱长×棱长;
圆柱的体积=底面积×高=πr2h;
圆锥的体积=eq \f(1,3)×底面积×高=eq \f(1,3)πr2h.
(2)常用的面积、周长公式
长方形的面积=长×宽;
长方形的周长=2×(长+宽);
正方形的面积=边长×边长;
正方形的周长=边长×4;
三角形的面积=eq \f(1,2)×底×高;
平行四边形的面积=底×高;
梯形的面积=eq \f(1,2)×(上底+下底)×高;
圆的面积=πr2;
圆的周长=2πr.
【例1】 用7.8米长的铁丝做成一个长方形框架,使长比宽多1.2米,求这个长方形框架的宽是多少米?设长方形的宽是x米,可列方程为( ).
A.x+(x+1.2)=7.8B.x+(x-1.2)=7.8
C.2[x+(x+1.2)]=7.8D.2[x+(x-1.2)]=7.8
解析:根据长方形的周长公式列方程即可.长方形的周长=2×(长+宽),故可列方程为2[x+(x+1.2)]=7.8.
答案:C
2.形积变化问题中的等量关系
形积变化问题中,物体的形状和体积会发生变化,但问题中一定有相等关系.分以下几种情况:
(1)形状发生了变化,体积不变.其相等关系是:变化前物体的体积=变化后物体的体积.
(2)形状、面积发生了变化,周长不变.其相等关系是:变化前图形的周长=变化后图形的周长.
(3)形状、体积不同.根据题意找出体积之间的关系,即为相等关系.
【例2】 有一位工人师傅要锻造底面直径为40 cm的“矮胖”形圆柱,可他手上只有底面直径是10 cm,高为80 cm的“瘦长”形圆柱,试帮助这位师傅求出“矮胖”形圆柱的高.
分析:圆柱的形状由“瘦长”变成“矮胖”,底面直径和高度都发生了变化,在不计损耗的情况下不变量是它们的体积,抓住这一不变量,就得到等量关系——锻造前的体积=锻造后的体积.
解:设锻造成“矮胖”形圆柱的高为x cm,
根据题意,得
π·52·80=π·202·x.
解这个方程,得
x=5.
答:“矮胖”形圆柱的高为5 cm.
3.等长变形问题
等长变形,是指用物体(一般用铁丝)围成不同的图形,图形的形状、面积发生了变化,但周长不变.
解答此类问题,可以利用周长不变设未知数,寻找相等关系列出方程.
面积问题中常常会用到特殊图形的周长和面积公式.如三角形、平行四边形、长方形、正方形、梯形、圆等;记住常见的几何图形的面积公式,抓住周长不变的特征是解决等长变形问题的关键.
【例3】 如图所示是用铁丝围成的一个梯形,将其改成一个长和宽比为2∶1的长方形,那么该长方形的长和宽分别为多少?
分析:根据“梯形的周长=长方形的周长”列方程求解.
解:设长方形的宽为x,则长为2x.
由题意,得2(x+2x)=5+6+9+13,
解这个方程,得x=5.5,所以2x=11.
答:该长方形的长和宽分别为11,5.5.
课堂小结
通过对“我变高了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键,其中也蕴涵了许多变与不变的辩证的思想.
遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.
学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.
教学反思
1.创造性地使用教材.
本节课的引入新颖自然,通过两个实验(情景2为液态物体变化,情景3为固态物体变化),使学生对课题有了初步的认识,并通过学生对实验的观察,发现了在物体形状变化时的不变量,从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.
2.相信学生并为学生提供充分展示自己的机会
本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.
3.注意改进的方面
本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.
相关教案
这是一份初中数学北师大版七年级上册5.3 应用一元一次方程——水箱变高了教案设计,共8页。
这是一份七年级上册5.3 应用一元一次方程——水箱变高了一等奖教案,共4页。教案主要包含了教学目标,课时安排,教学重点,教学难点,教学过程,板书设计,作业布置,教学反思等内容,欢迎下载使用。
这是一份北师大版七年级上册第五章 一元一次方程5.3 应用一元一次方程——水箱变高了教学设计,共3页。