初中数学浙教版九年级下册1.3 解直角三角形教案
展开第3课时 俯角、仰角和方向角
1、进一步掌握解直角三角形的方法;
2、比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题;
3、培养学生把实际问题转化为数学问题的能力。
教学重点
解直角三角形在测量方面的应用;
教学难点
选用恰当的直角三角形,解题思路分析。
一、新课导入
在本章的开头,我们曾经用自制的测角仪测出视线(眼睛与旗杆顶端的连线)与水平线的夹角,那么把这个角称为什么角呢?
如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。右图中的∠1就是仰角, ∠2就是俯角。
二、探索新知
例1.如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高度。
分析:因为AB=AE+BE,AE=CD=1.20米,所以只要求出BE的长度,问题就得到解决,在△BDE中,已知DE=CA=22.7米,∠BDE=22°,那么用哪个三角函数可解决这个问题呢?显然正切或余切都能解决这个问题。
例2.如图,A、B是两幢地平高度相等、隔岸相望的建筑物,B楼不能到达,由于建筑物密集,在A楼的周围没有开阔地带,为测量B楼的高度,只能充分利用A楼的空间,A楼的各层都可到达且能看见B楼,现仅有测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的夹角)。
(1)你设计一个测量B楼高度的方法,要求写出测量步骤和必需的测量数据 (用字母表示),并画出测量图形。
(2)用你测量的数据(用字母表示)写出计算B楼高度的表达式。
分析:如右图,由于楼的各层都能到达,所以A楼的高度可以测量,我们不妨站在A楼的顶层测B楼的顶端的仰角,再测B楼的底端的俯角,这样在Rt△ABD中就可以求出BD的长度,因为AE=BD,而后Rt△ACE中求得CE的长度,这样CD的长度就可以求出.
请同学们想一想,是否还能用其他的方法测量出B楼的高度。
三、归纳小结
1.仰角、俯角的概念
2. 有关仰角、俯角的解直角三角形的应用题.
请完成本课时对应练习!
初中数学24.4 解直角三角形教案: 这是一份初中数学24.4 解直角三角形教案,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点等内容,欢迎下载使用。
初中人教版第二十八章 锐角三角函数28.2 解直角三角形及其应用第1课时教学设计: 这是一份初中人教版第二十八章 锐角三角函数28.2 解直角三角形及其应用第1课时教学设计,共2页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。
湘教版九年级上册4.4 解直接三角形的应用一等奖第1课时教案及反思: 这是一份湘教版九年级上册4.4 解直接三角形的应用一等奖第1课时教案及反思,共5页。教案主要包含了创设情境,导入新课等内容,欢迎下载使用。