(云南版)2021年中考数学模拟练习卷09(含答案)
展开
这是一份(云南版)2021年中考数学模拟练习卷09(含答案),共13页。试卷主要包含了下列各式属于最简二次根式的是,如图,y=,某排球队6名场上队员的身高等内容,欢迎下载使用。
中考数学模拟练习卷一.选择题(共8小题,满分32分,每小题4分)1.下列各式属于最简二次根式的是( )A. B. C. D.2.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于( )A.75 B.100 C.120 D.1253.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是( )A. B.2 C.3 D.44.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )A.16 B.17 C.18 D.195.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )A.1 B.﹣1 C.0或﹣1 D.1或﹣16.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高( )A.平均数变小,方差变小 B.平均数变小,方差变大 C.平均数变大,方差变小 D.平均数变大,方差变大7.如图,在平行四边形ABCD中,都不一定成立的是( )①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④8.若bk<0,则直线y=kx+b一定通过( )A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二.填空题(共6小题,满分18分,每小题3分)9.一组数据1,4,4,3,4,3,4的众数是 .10.函数y=+中,自变量x的取值范围是 .11.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是 .12.直角三角形两直角边长分别为5和12,则它斜边上的高为 .13.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是 .14.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为 .三.解答题(共9小题,满分70分)15.(5分)计算:×(2﹣)﹣÷+.16.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.17.(6分)如图,在平行四边形ABCD中,AE⊥BC,垂足为E,点F为边CD上一点,且DF=BE,过点F作FG⊥CD,交AD于点G.求证:DG=DC.18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(Ⅰ)本次抽查测试的学生人数为 ,图①中的a的值为 ;(Ⅱ)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(8分)一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),求一次函数的解析式.20.(7分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.21.(8分)如图,在△ABC中,∠ACB=90°,AC=15.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.(1)求证;四边形PBEC是平行四边形;(2)填空:①当AP的值为 时,四边形PBEC是矩形;②当AP的值为 时,四边形PBEC是菱形.22.(10分)A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)(Ⅰ)根据题意,填写下表:时间x(h)与A地的距离0.51.8 甲与A地的距离(km)5 20乙与A地的距离(km)012 (Ⅱ)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(Ⅲ)设甲,乙两人之间的距离为y,当y=12时,求x的值.23.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.
参考答案一.选择题1.解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.2.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.3.解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=4,∴AG═2,∴AE=2AG=4;∴S△ABE=AE•BG=×4×4=8.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1.∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=2.故选:B.4.解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选:A.5.解:由题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.6.解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2] =,新数据的平均数为=187,则新数据的方差为×[(180﹣187)2+(184﹣187)2+(188﹣187)2+(190﹣187)2+(186﹣187)2+(194﹣187)2]=,所以平均数变小,方差变小,故选:A.7.解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.8.解:由bk<0,知①b>0,k<0;②b<0,k>0,①当b>0,k<0时,直线经过第一、二、四象限,②b<0,k>0时,直线经过第一、三、四象限.综上可得函数一定经过一、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:在这一组数据中4是出现次数最多的,故众数是4.故答案为:4.10.解:由题意得,1﹣x≠0,x+2≥0,解得,x≥﹣2且x≠1,故答案为:x≥﹣2且x≠1.11.解:∵一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限,∴,解得,k>3.故答案是:k>3.12.解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.13.解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=35°,∴∠PEF=∠PFE=35°,故答案为:35°.14.解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.故答案是:﹣4<x<﹣.三.解答题(共9小题,满分70分)15.解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣16.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.17.证明:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,,∴△AEB≌△GFD,∴AB=DG,∴DG=DC.18.解:(Ⅰ)本次抽查测试的学生人数为14÷28%=50人,a%=×100%=24%,即a=24,故答案为:50、24; (Ⅱ)观察条形统计图,平均数为=7.88,∵在这组数据中,8出现了20次,出现的次数最多,∴这组数据的众数是8.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是8,有.∴这组数据的中位数是8.19.解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得.故一次函数的解析式为y=2x+3.20.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=42.21.解:∵点D是BC的中点,∴BD=CD,∵DE=PD,∴四边形PBEC是平行四边形; (2)①当∠APC=90°时,四边形PBEC是矩形,∵AC=15.sin∠A=,∴PC=12,由勾股定理得AP=9,∴当AP的值为9时,四边形PBEC是矩形; ②∵在△ABC中,∠ACB=90°,AC=15.sin∠A=,所以设BC=4x,AB=5x,则(4x)2+152=(5x)2,解得:x=5,∴AB=5x=25,当PC=PB时,四边形PBEC是菱形,此时点P为AB的重点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC是菱形.22.解(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发.当时间x=1.8 时,甲离开A的距离是10×1.8=18(km)当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时)此时乙行驶的时间是2﹣1.5=0.5(时),所以乙离开A的距离是40×0.5=20(km)故填写下表:(Ⅱ)由题意知: y1=10x (0≤x≤1.5), (Ⅲ)根据题意,得 当0≤x≤1.5时,由10x=12,得x=1.2 当1.5<x≤2时,由﹣30x+60=12,得x=1.6因此,当y=12时,x的值是1.2或1.623.(1)证明:∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,∵矩形ABCD,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED是菱形; (2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2,∴AB=DC=2,连接OE,交CD于点F,∵四边形OCED为菱形,∴F为CD中点,∵O为BD中点,∴OF=BC=1,∴OE=2OF=2,∴S菱形OCED=×OE×CD=×2×2=2.
相关试卷
这是一份(安徽版)2021年中考数学模拟练习卷09(含答案),共12页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份(广东版)2021年中考数学模拟练习卷09(含答案),共17页。试卷主要包含了a的倒数是3,则a的值是,下列调查中,适合采用全面调查等内容,欢迎下载使用。
这是一份(河北版)2021年中考数学模拟练习卷09(含答案),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。