(陕西版)2021年中考数学模拟练习卷03(含答案)
展开
这是一份(陕西版)2021年中考数学模拟练习卷03(含答案),共16页。试卷主要包含了等于,下列图形不是正方体展开图的是,计算,已知二次函数y=等内容,欢迎下载使用。
中考数学模拟练习卷一.选择题(共10小题,满分30分)1.等于( )A.﹣4 B.4 C.±4 D.256 2.下列图形不是正方体展开图的是( )A. B. C. D. 3.正比例函数y=kx的自变量取值增加2,函数值就相应减少2,则k的值为( )A.2 B.﹣2 C.﹣1 D.4 4.如图,直线AB∥CD,则下列结论正确的是( )A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°5.计算(1+)÷的结果是( )A.x+1 B. C. D. 6.在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为( )A.50° B.40° C.30° D.25° 7.如图,观察图象,判断下列说法错误的是( )A.不等式﹣x+>2x﹣1的解是x>1 B.不等式﹣x+≤2x﹣1的解集是x≥1 C.方程﹣x+=2x﹣1的解是x=1 D.方程组的解是 E.方程组的解是 8.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )A.110 B.158 C.168 D.178 9.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )A. B. C. D. 10.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是( )A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x 二.填空题(共4小题,满分12分,每小题3分)11.已知实数a,b,在数轴上的对应点位置如图所示,则a+b﹣2 0(填“>”“<”或“=”).12.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则弧AB的长为 .13.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为 .14.如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB= ;(2)当OA=2时,AP= . 三.解答题(共11小题,满分61分)15.(5分)计算:|﹣1|+(3.14﹣π)0+()﹣1+.16.(5分)解方程: +﹣=1.17.(5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.18.(5分)某校在“清明节”前组织七年级全体学生进行了一次“缅怀先烈,牢记历史”知识竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图中提供的信息,解答下列问题:分数段(x表示分数)频数频率50≤x<6040.160≤x<708b70≤x<80a0.380≤x<90100.2590≤x<100[来源:学*科*网Z*X*X*K]60.15(1)表中a= ,b= ,并补全直方图;(2)若用扇形统计图描述次成绩统计图分别情况,则分数段60≤x<70对应扇形的圆心角度数是 ;(3)若该校七年级共900名学生,请估计该年级分数在80≤x<100的学生有多少人?19.(7分)已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.20.如图,某人行道处有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=4m,沿BD方向后退5米到G处,测得自己的影长GH=6,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为 米/分,点M的坐标为 ;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.22.(7分)在北海市创建全国文明城活动中,需要30名志愿者担任“讲文明树新风”公益广告宣传工作,其中男生18人,女生12人.(1)若从这30人中随机选取一人作为“展板挂图”讲解员,求选到女生的概率;(2)若“广告策划”只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲担任,否则乙担任.试问这个游戏公平吗?请用树状图或列表法说明理由.23.(8分)如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=,求⊙O的直径AB和弦BC的长. 24.如图,在平面直角坐标系中,二次函数y=﹣x2+4x+5的图象交x轴于点A、B(点A在点B的右边),交y轴于点C,顶点为P.点M是射线OA上的一个动点(不与点O重合),点N是x轴负半轴上的一点,NH⊥CM,交CM(或CM的延长线)于点H,交y轴于点D,且ND=CM.(1)求证:OD=OM;(2)设OM=t,当t为何值时以C、M、P为顶点的三角形是直角三角形?(3)问:当点M在射线OA上运动时,是否存在实数t,使直线NH与以AB为直径的圆相切?若存在,请求出相应的t值;若不存在,请说明理由.25.(12分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.
参考答案一.选择题1.B. 2.C. 3.C. 4.D. 5.B. 6.A. 7.A. 8.B. 9.C. 10.C. 二.填空题11.<. 12.2π. 13.17. 14.60°, 2. 三.解答题15.解:原式=﹣1+1+﹣1﹣2=﹣. 16.解:方程两边同乘(x+2)(x﹣2)得 x﹣2+4x﹣2(x+2)=x2﹣4,整理,得x2﹣3x+2=0,解这个方程得x1=1,x2=2,经检验,x2=2是增根,舍去,所以,原方程的根是x=1. 17.解:如图所示,△ABC为所求作 18.解:(1)∵被调查的学生总人数为4÷0.1=40,∴a=40×0.3=12、b=8÷40=0.2,[来源:Zxxk.Com]补全图形如下:故答案为:12、0.2; (2)分数段60≤x<70对应扇形的圆心角度数是360°×0.2=72°,故答案为:72°; (3)估计该年级分数在80≤x<100的学生有900×(0.25+0.15)=360人. 19.证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形. 20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=10,∴=,解得AB=5.95.答:路灯杆AB高5.95m. 21.解:(1)由题意得:甲的骑行速度为: =240(米/分),240×(11﹣1)÷2=1200(米),则点M的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,解得,∴直线MN的解析式为:y=﹣240x+2640;即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200﹣1020=180,分5种情况:①当0<x≤3时,1020﹣240x=180﹣60x,x=>3,此种情况不符合题意;②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,∴1020﹣240x=60x﹣180,x=4,③当<x≤6时,甲在B、C之间,乙在A、C之间,∴240x﹣1020=60x﹣180,x=<,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60﹣180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,当甲在B、C之间时,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,此种情况不符合题意,当甲在A、C之间时,240(x﹣1)﹣1200﹣180=60x﹣180,x=8,综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等. 22.解:(1)∵现有30名志愿者准备参加公益广告宣传工作,其中男生18人,女生12人,∴从这30人中随机选取一人作为“展板挂图”讲解员,选到女生的概率为=; (2)表格如下: 第2次第1次23452 (2,3)(2,4)(2,5)3(3,2) (3,4)(3,5)4(4,2)(4,3) (4,5)5[来源:Zxxk.Com](5,2)(5,3)(5,4) 牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9共12种.∴甲参加的概率为:P(和为偶数)==,乙参加的概率为:P(和为奇数)==,因为≠,所以游戏不公平. 23.解:连接AC,如图所示:∵直线AT切⊙O于点A,∴∠BAT=90°,在Rt△ABT中,∠B=30°,AT=,∴tan30°=,即AB==3;∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,AB=3,∴cos30°=,则BC=AB•cos30°=. 24.解:(1)∵NH⊥CM,∴∠OND+∠OMC=90°,∵∠OCM+∠OMC=90°,∴∠OND=∠OCM,∵ND=CM,∴△DON≌△MOC,∴OD=OM; (2)二次函数y=﹣x2+4x+5的顶点P(2,9),点C的坐标为(0,5),∴直线PC的解析式为y=2x+5,∵PC⊥CM,∴直线MC的解析式为y=﹣x+5,∴点M的坐标为(10,0),∴t=10;∴当t为10时,以C、M、P为顶点的三角形是直角三角形;设M(b,0)CM2=25+b2PM2=81+(b﹣2)281+(b﹣2)2+20=25+b2b=20M(20,0)当t=20时以C、M、P为顶点的三角形是直角三角形. (3)假设存在实数t,使直线NH与以AB为直径的圆相切,设圆心为E,与直线NH的切点为F,由(1)可得△EFN∽△COM,∴=,∴=,解得t=,∴存在实数t=,使直线NH与以AB为直径的圆相切. 25.解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2), (3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.
相关试卷
这是一份中考数学模拟练习卷03,共8页。试卷主要包含了计算,下列调查中,适合采用全面调查,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份(湖北版)2021年中考数学模拟练习卷03(含答案),共18页。试卷主要包含了|1﹣|=,下列运算正确的是等内容,欢迎下载使用。
这是一份(河南版)2021年中考数学模拟练习卷03(含答案),共29页。试卷主要包含了﹣3的倒数是,民族图案是数学文化中的一块瑰宝,下列计算,正确的是,点M等内容,欢迎下载使用。