数学八年级上册12.1 全等三角形学案设计
展开
这是一份数学八年级上册12.1 全等三角形学案设计,共7页。学案主要包含了答案与解析等内容,欢迎下载使用。
【巩固练习】一.选择题1. 如图所示,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )A.2 B.3 C.5 D.2.52.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是( ) A. SAS B. ASA C. AAS D. SSS 3. 如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4. 在下列结论中, 正确的是( ) A.全等三角形的高相等 B.顶角相等的两个等腰三角形全等 C. 一角对应相等的两个直角三角形全等 D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是( ). A. 线段CD的中点 B. OA与OB的中垂线的交点 C. OA与CD的中垂线的交点 D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有( )组.A.1组 B.2组 C.3组 D.4组7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A. 相等 B.不相等 C.互补 D.相等或互补8. △ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( )
A.45° B.20° C.、30° D.15°二.填空题9. 已知,若△ABC的面积为10 ,则的面积为________ ,若的周长为16,则△ABC的周长为________.10. △ABC和△ADC中,下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠BAC,CD=2cm,则BD的长是 .12. 下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13. 如右图,在△ABC中,∠C=90°,BD平分∠CBA交AC于点D.若AB=,CD=,则△ADB的面积为______________ .14.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.(1)若以“SAS”为依据,需添加条件 ;(2)若以“HL”为依据,需添加条件 .15. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.16. 在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,DE⊥AB于E.若AB=20cm,则△DBE的周长为_________.三.解答题17. 已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC. 18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB于D.求证: AC=AD 19. 已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:BE=CF.20.感受理解如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是 自主学习事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等学以致用参考上述学到的知识,解答下列问题:如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.【答案与解析】一.选择题1. 【答案】B;【解析】根据全等三角形对应边相等,EC=AC-AE=5-2=3;2. 【答案】D; 【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.3. 【答案】D;【解析】∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.4. 【答案】D; 【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5. 【答案】D; 【解析】角平分线上的点到角两边的距离相等.6. 【答案】C; 【解析】(1)(2)(3)能使两个三角形全等.7. 【答案】A; 【解析】高线可以看成为直角三角形的一条直角边,进而用HL定理判定全等.8. 【答案】D; 【解析】由题意可得∠B=∠DAC=60°,∠C=30°,所以∠DAE=60°-45°=15°.二.填空题9. 【答案】10,16;【解析】全等三角形面积相等,周长相等.10.【答案】①②③;11.【答案】4cm; 【解析】解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm,又∵∠B=∠ABD=30°,∴AD=BD=4cm.故答案为:4cm.12.【答案】①③ 【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.13.【答案】;【解析】由角平分线的性质,D点到AB的距离等于CD=,所以△ADB的面积为.14.【答案】AB=CD;AD=BC【解析】(1)若以“SAS”为依据,需添加条件:AB=CD;△ABC≌△CDA(SAS);(2)若以“HL”为依据,需添加条件:AD=BC;Rt△ABC≌Rt△CDA(HL).15.【答案】45°; 【解析】Rt△BDH≌Rt△ADC,BD=AD.16.【答案】20; 【解析】BC=AC=AE,△DBE的周长等于AB.三.解答题17.【解析】证明:∵∠BAE=∠CAD,∴∠BAE∠CAE =∠CAD∠CAE,即∠BAC=∠EAD. 在△ABC和△AED中, ∴△ABC≌△AED. (AAS)∴AC=AD. ∴∠ACD=∠ADC. 18.【解析】证明:∵AC⊥BC,CE⊥AB ∴∠CAB+∠1=∠CAB+∠3=90°, ∴∠1=∠3 又∵FD∥BC ∴∠2=∠3, ∴∠1=∠2 在△CAF与△DAF中 ∴△CAF与△DAF(AAS) ∴AC=AD.19.【解析】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,(已知) ∴DE=DF(角平分线上的点到角两边距离相等)又∵BD=CD ∴△BDE≌△CDF(HL)∴BE=CF 20.【解析】解:感受理解EF=FD.理由如下:∵△ABC是等边三角形,∴∠BAC=∠BCA,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠DAC=∠ECA,∠BAD=∠BCE,∴FA=FC.∴在△EFA和△DFC中,,∴△EFA≌△DFC,∴EF=FD;学以致用:证明:如图1,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,∴∠BAC+∠ACB=180°﹣60°=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠2=∠BAC,∠3=∠ACB,∴∠2+∠3=(∠BAC+∠ACB)=×120°=60°,∴∠AFE=∠CFD=∠AFG=60°.∴∠CFG=180°﹣∠AFG﹣∠CFD=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,∵CE是∠BCA的平分线,∴∠3=∠4,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD.
相关学案
这是一份人教版七年级下册6.3 实数导学案,文件包含15实数全章复习与巩固基础知识讲解doc、15实数全章复习与巩固基础巩固练习doc等2份学案配套教学资源,其中学案共10页, 欢迎下载使用。
这是一份初中数学人教版八年级上册13.1.1 轴对称学案,共9页。学案主要包含了答案与解析等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册13.1.1 轴对称导学案,共8页。学案主要包含了答案与解析等内容,欢迎下载使用。