数学九年级上册2.7 弧长及扇形的面积精品当堂检测题
展开2021年苏科版数学九年级上册
2.7《弧长及扇形的面积》同步练习卷
一、选择题
1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( )
A.3π B.4π C.5π D.6π
2.如图,PA、PB是⊙O切线,切点分别为A、B,若OA=2,∠P=60°,则长为( )
A.π B.π C. D.
3.钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是( )
A.cm B.cm C.cm D.cm
4.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为( )
A.π B.π C.π D.π
5.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为( )
A. B. C. D.
6.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长( )
A.2π B.π C. D.
7.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是( )
A.EF∥CD B.△COB是等边三角形 C.CG=DG D.的长为π
8.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm B.15cm C.10cm D.20cm
9.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为( )
A.π B.2π C.2π D.4π
10.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是( )
A.甲先到B点 B.乙先到B点 C.甲、乙同时到B D.无法确定
二、填空题
11.已知扇形的半径为3 cm,其弧长为2π cm,则此扇形的圆心角等于 度,扇形的面积是 .(结果保留π)
12.已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角为 .
13.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是 cm.
14.弧长为12πcm,此弧所对的圆心角为240°,则此弧所在圆的半径为 .
15.已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是 cm,面积是 cm2.
16.如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为点D,
当△OCD的面积最大时,的长为 .
三、解答题
17.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求的长.
18.如图,AB是⊙O的直径,AB⊥弦CD,垂足为E,∠A=27°,CD=8cm,BE=2cm.
(1)求⊙O的半径,(2)求的长度(结果保留π).
19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.
(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.
20.如图,在四边形ABCD中,AD∥BC,AD=2,AB=2,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F.
(1)求∠ABE的大小及的长度;
(2)在BE的延长线上取一点G,使得上的一个动点P到点G的最短距离为2-2,求BG的长.
参考答案
1.答案为:B
2.C
3.答案为:B
4.答案为:A
5.答案为:C.
6.B.
7.D
8.D
9.答案为:B.
10.C
11.答案为:120,3π cm2.
12.答案为:160°
13.答案为:6.
14.答案为:9cm.
15.答案为:24;240π;
16.答案为:πr.
17.解:(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°.
∵OC∥BD,
∴∠AEO=∠ADB=90°,即OC⊥AD,
∴AE=ED.
(2)∵OC⊥AD,∴=,
∴∠ABC=∠CBD=36°,
∴∠AOC=2∠ABC=2×36°=72°,
∴==2π.
18.解:连接OC,如图所示:
∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,
∵BE=2cm,∴OE=OC﹣2,∴OC2=42+(OC﹣2)2,
∴OC=∴△COE为等腰直角三角形,∴OC=5,即⊙O的半径为5cm;
(2)∵∠A=27°,∴∠BOC=54°,∴的长度==π,
∵,∴的长度=π.
19.解:(1)MN是⊙O切线.
理由:连接OC.∵OA=OC,
∴∠OAC=∠OCA,
∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
∴∠BCM=∠BOC,
∵∠B=90°,∴∠BOC+∠BCO=90°,
∴∠BCM+∠BCO=90°,
∴OC⊥MN,
∴MN是⊙O切线.
(2)由(1)可知∠BOC=∠BCM=60°,
∴∠AOC=120°,
在RT△BCO中,OC=OA=4,∠BCO=30°,
∴BO=OC=2,BC=2
∴S阴=S扇形OAC﹣S△OAC=﹣=﹣4.
20.解:(1)连接AE,如图,
∵以AD为半径的圆与BC相切于点E,
∴AE⊥BC,AE=AD=2.
在Rt△AEB中,AE=2,AB=2,
∴BE=2,即△ABE是等腰直角三角形,
∴∠ABE=45°.
∵AD∥BC,
∴∠DAB+∠ABE=180°,
∴∠DAB=135°,
∴的长度为=;
(2)如图,根据两点之间线段最短,可得当A,P,G三点共线时PG最短,
此时AG=AP+PG=2+2-2=2,
∴AG=AB.
∵AE⊥BG,
∴BE=EG.
∴BG=2BE=4.
数学九年级上册2.7 弧长及扇形的面积习题: 这是一份数学九年级上册2.7 弧长及扇形的面积习题,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中苏科版2.7 弧长及扇形的面积同步达标检测题: 这是一份初中苏科版2.7 弧长及扇形的面积同步达标检测题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
苏科版九年级上册2.7 弧长及扇形的面积精品随堂练习题: 这是一份苏科版九年级上册2.7 弧长及扇形的面积精品随堂练习题,共11页。试卷主要包含了7 弧长及扇形的面积》同步练习等内容,欢迎下载使用。