- 1.4.1 全称量词练习题 试卷 0 次下载
- 1.4.3 含有一个量词的命题的否定 试卷 0 次下载
- 第一章 常用逻辑用语复习提升 试卷 试卷 0 次下载
- 第一章 常用逻辑用语达标检测 试卷 0 次下载
- 2.1.1 曲线与方程练习题 试卷 1 次下载
高中人教版新课标A第一章 常用逻辑用语综合与测试免费巩固练习
展开专题强化练1 简易逻辑的综合问题
一、选择题
1.(2019天津新华中学高三一模,★★☆)已知命题p:>,命题q:∀x∈R,ax2+ax+1>0,则p成立是q成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.(2018江西莲塘一中质量检测,★★☆)已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;命题q:若a·b<0,则a,b的夹角为钝角.在命题①p∧q;②(¬p)∨(¬q);③p∨(¬q);④(¬p)∨q中,真命题是( )
A.①③ B.①④
C.②③ D.②④
3.(2019湖南师大附中高三模拟,★★☆)命题p:∀x∈R,x2-4x+2m≥0 (其中m为常数),则“m≥1”是“命题p为真命题”的( )
A.充分不必要条件 B.必要不充分条件
C.充分且必要条件 D.既不充分也不必要条件
4.(2020广东汕头金山中学高三期末,★★☆)已知命题p:∃x0∈[0,π],使得sin x0<a,命题q:∀x∈,+1>a,若p∧q为真命题,则a的取值范围是( )
A. B.(0,3)
C. D.(1,3)
5.(2019天津北辰高考模拟,★★☆)下列说法正确的是( )
A.若¬(p∧q)为真命题,则p,q均为假命题
B.命题“∀x∈R,ax+b≤0”的否定是“∃x0∈R,ax0+b≥0”
C.等比数列{an}的前n项和为Sn,“若a1>0,则S2 019>S2 018”的否命题为真命题
D.“平面向量a与b的夹角为钝角”的充要条件是“a·b<0”
6.(2019江西南昌师大附中三模,★★☆)“∀n∈N*,nlg a<
(n+1)lg aa(a>1)”的一个必要不充分条件是( )
A.a>0 B.a>1
C.a>2 D.a>3
二、填空题
7.(2018湖北孝感八校联考,★★☆)已知命题p:∀x∈R,x2+1>0,命题q:∀x∈R,sin x+cos x<a,且p∧q为假命题,则实数a的取值范围为 .
8.(2018豫南九校高三下学期联考改编,★★★)给出下列结论:
①若x>0,y>0,则“x+2y=2”的一个充分不必要条件是“x=2且y=1”;
②∃a>1,x>0,使得ax<logax;
③对于命题p:∃x0∈R,使得x0+>2,则¬p:∀x∈R,均有x+≤2;
④在锐角△ABC中,若sin B(1+2cos C)=2sin Acos C+cos Asin C,则必有A=2B.
其中正确结论的序号为 .
9.(2019江西上饶高二期中,★★★)设命题p:实数a满足不等式3a≤9;命题q:曲线f(x)=3x2+9(3-a)x+27与x轴至多有一个交点.已知“p∧q”为真命题,记为r.命题t:a2-a+m>0,若r是¬t的必要不充分条件,则正整数m的值为 .
三、解答题
10.(2019安徽滁州高二期末,★★★)已知p:m<a+1<m2+2;q:函数f(x)=log2x-a在区间上有零点.
(1)若m=1,求p∨q为真命题时实数a的取值范围;
(2)若p成立是q成立的充分不必要条件,求实数m的取值范围.
答案全解全析
一、选择题
1.A 对于命题p,解不等式>可得0<a<4,所以p成立时,0<a<4.
对于命题q,当a=0时,命题显然成立;
当a≠0时,有解得0<a<4.
所以q成立时,0≤a<4.
故p成立是q成立的充分不必要条件.
2.C a>2且b>2⇒a+b>4,反之由a+b>4不一定得到a>2,b>2,如a=1,b=5,因此命题p为真命题;a·b<0,则a,b的夹角为钝角或平角,所以命题q为假命题,从而p∧q,(¬p)∨q为假命题,(¬p)∨(¬q),p∨(¬q)为真命题.故选C.
3.B 若命题p为真,则对任意x∈R,x2-4x+2m≥0恒成立,所以Δ=16-8m≤0,即m≥2,所以m≥1⇒/m≥2,m≥2⇒m≥1,故“m≥1”是“命题p为真命题”的必要不充分条件.
4.A 因为p∧q为真命题,所以p,q均为真命题.
对于命题p,x0∈[0,π]时,sin x0∈[0,1],所以a>0.
对于命题q,因为x∈,所以∈,+1∈,所以a<.
所以a的取值范围是.
5.C A选项,¬(p∧q)为真,则p∧q为假,即p,q中至少有一个是假命题,可知A错误;
B选项,原命题的否定是“∃x0∈R,ax0+b>0”,可知B错误;
C选项,“若a1>0,则S2 019>S2 018”的逆命题为“若S2 019>S2 018,则a1>0”,
S2 019=S2 018+a2 019>S2 018⇒a2 019=a1q2 018>0,∵q2 018>0,∴a1>0,∴原命题的逆命题为真命题,又逆命题与否命题真假性相同,所以原命题的否命题为真命题,可知C正确;
D选项,当a·b<0时,a与b的夹角可能为π,可知D错误.
6.A 由nlg a<(n+1)lg aa得
nlg a<a(n+1)lg a,
∵a>1,∴lg a>0,∴n<a(n+1),即a>,∵=1-<1,
∴a>1时,不等式nlg a<(n+1)lg aa(a>1)恒成立,则a>0是其必要不充分条件,a>1是其充要条件,a>2,a>3均是其充分不必要条件.
二、填空题
7.答案 (-∞,2]
解析 显然命题p是真命题.由于p∧q为假命题,故q为假命题,即∃x∈R,使得sin x+
cos x≥a,即2sin≥a,故a≤2.
8.答案 ①②③
解析 对于①,由于x>0,y>0,所以x+2y≥2,当且仅当x=2y时取等号.故“x=2且y=1”是“x+2y=2”的充分不必要条件,故①正确;对于②,取a=1.1,x=1.21,不等式成立,故②正确;易知③正确;对于④,由题意,得sin(A+C)+2sin Bcos C=2sin A cos C+cos Asin C,所以2sin Bcos C=sin Acos C,因为在锐角三角形中,cos C≠0,所以2sin B=sin A,因为
sin B≠0,所以cos B≠1,所以2sin B cos B≠sin A,即sin 2B≠sin A,所以A≠2B,故④错误.综上,答案为①②③.
9.答案 1
解析 因为3a≤9,所以a≤2.因为曲线f(x)=3x2+9(3-a)x+27与x轴至多有一个交点,所以Δ=81(3-a)2-4×3×27≤0,所以1≤a≤5.
因为“p∧q”为真命题,所以r:1≤a≤2.
易知¬t:a2-a+m≤0,
因为r是¬t的必要不充分条件,所以不等式a2-a+m≤0的解集为[1,2]的一个真子集,所以解得1≤m≤,从而正整数m的值为1.
三、解答题
10.解析 (1)当m=1时,p:0<a<2,
∵函数f(x)=log2x-a在区间上单调递增且有零点,
∴解得-2<a<2,
则q:-2<a<2.
∵p∨q为真命题,∴0<a<2或-2<a<2,解得-2<a<2.
故实数a的取值范围是(-2,2).
(2)∵p:m-1<a<m2+1,q:-2<a<2,p成立是q成立的充分条件,
∴解得-1≤m≤1,又∵p成立是q成立的不必要条件,所以不等式组中的两个不等式中的等号不能同时成立,∴m≠-1,综上,实数m的取值范围是(-1,1].
2021学年第六章 导数及其应用本章综合与测试达标测试: 这是一份2021学年第六章 导数及其应用本章综合与测试达标测试,共14页。试卷主要包含了已知函数f=ex+x-e-1等内容,欢迎下载使用。
人教B版 (2019)选择性必修 第一册第一章 空间向量与立体几何本章综合与测试课后测评: 这是一份人教B版 (2019)选择性必修 第一册第一章 空间向量与立体几何本章综合与测试课后测评,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教B版 (2019)选择性必修 第一册第一章 空间向量与立体几何本章综合与测试课时作业: 这是一份高中数学人教B版 (2019)选择性必修 第一册第一章 空间向量与立体几何本章综合与测试课时作业,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。