2020-2021学年9.1 随机抽样课时训练
展开9.1.2 分层随机抽样
9.1.3 获取数据的途径
基础过关练
题组一 分层随机抽样
1.下列抽样中,最适合用分层随机抽样方法的是( )
A.某报告厅有32排座位,每排有40个座位,座位号是1~40,有一次报告厅坐满了听众,为了听取听众的意见,报告会结束以后要留下32名听众进行座谈
B.从10台冰箱中抽取3台进行质量检验
C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田的平均产量
D.从50个零件中抽取5个进行质量检验
2.(2020湖南长沙长郡中学模块检测)某次娱乐节目中有A、B、C三个方阵,其人数之比为3∶3∶4,现用比例分配的分层随机抽样方法抽取一个容量为n的样本,其中方阵A被抽取的人数为12,则n=( )
A.20 B.25 C.30 D.40
3.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用比例分配的分层随机抽样方法抽取一个容量为150的样本,则样本中松树苗的棵数为(深度解析)
A.30 B.25 C.20 D.15
4.(2020山东滕州一中高一网课效果检测)某中学的高一、高二、高三三个年级共有学生1 350人,其中高一年级有500人,高三年级比高二年级少50人,为了解该校学生的健康状况,现采用比例分配的分层随机抽样方法进行调查,在抽取的样本中,高一年级学生有120人,则该样本中高二年级学生的人数为( )
A.80 B.96 C.108 D.110
- 一批产品中有一级品100个,二级品60个,三级品40个,用分层随机抽样方法从这批产品中抽取一个容量为20的样本,请写出抽样过程.
深度解析
题组二 分层随机抽样中的总体平均数与样本平均数
6.分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为 .
7.某学校有高中学生500人,其中男生320人,女生180人,为了了解该校全体高中学生的身高信息,按照比例分配的分层随机抽样方法抽取了男生32人,女生18人.通过计算得到男生身高的样本平均数为173.5 cm,女生身高的样本平均数为163.8 cm,估计该校全体高中学生身高的平均数为 .(保留一位小数)
8.某地区有高中生7 200人,初中生11 800人,小学生12 000人.当地教育部门为了了解本地区中小学生的近视率,采用分层随机抽样的方法,按高中生、初中生、小学生进行分层,得到高中生、初中生、小学生的近视率分别为80%、70%、36%.
(1)如果在各层中按比例分配样本,总样本量为310,那么在高中生、初中生、小学生中分别抽取了多少人?在这种情况下,请估计该地区全体中小学生的近视率;
(2)如果从高中生、初中生、小学生中抽取的样本量分别为60、100和150,那么在这种情况下,抽取的样本的近视率是多少?该地区全体中小学生的近视率约为多少?
题组三 获取数据的途径
9.下列要研究的数据一般通过试验获取的是( )
A.某品牌电视机的市场占有率
B.某电视连续剧在全国的收视率
C.某校七年级一班的男、女同学比例
D.某型号炮弹的射程
10.“中国天眼”为500米口径球面射电望远镜(简称FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是( )
A.通过调查获取数据 B.通过试验获取数据
C.通过观察获取数据 D.通过查询获得数据
答案全解全析
基础过关练
1.C A中总体所含个体无差异且个数较多,不适合用分层随机抽样;B,D中总体所含个体无差异且个数较少,适合用简单随机抽样;C中总体所含个体差异明显,适合用分层随机抽样.
2.D 由题意得n×=12,解得n=40,故选D.
3.C 样本中松树苗的棵数为4 000×=4 000×=20.
方法技巧
进行分层随机抽样的相关计算时,常利用以下关系式巧解:
(1)
=;
(2)总体中某两层的个体总数之比=样本中这两层抽取的个体数之比.
4.C 设该校高二年级共有学生x人,则x+x-50+500=1 350,解得x=450,所以高一、高二、高三三个年级的学生人数分别为500,450,400.抽样比为=,所以样本中高二年级学生的人数为450×=108,故选C.
5.解析 第一步,确定抽样比,由题意得,抽样比为=;
第二步,确定各层抽取的样本数,一级品:100×=10,二级品:60×=6,三级品:40×=4;
第三步:采用简单随机抽样的方法,从各层分别抽取样本;
第四步,把抽取的个体组合在一起构成所需样本.
方法技巧
当采用分层随机抽样时,应严格按照分层随机抽样的步骤进行,即先确定抽样比,然后进行层内抽样,最后将各个层的样本综合起来,组成所要求的样本.在进行层内抽样时,需要注明所采用的简单随机抽样方法,即抽签法或随机数法,根据两种抽样方法的特点以及适用范围选用合适的方法即可.
6.答案 6
解析 样本的平均数为×3+×8=6.
7.答案 170.0 cm
解析 样本平均数=×173.5+×163.8≈170.0(cm).
由于采用了比例分配的分层随机抽样方法,所以估计该校全体高中学生身高的平均数为170.0 cm.
8.解析 (1)分配比例为
=,所以在高中生、初中生、小学生中分别抽取7 200×=72(人),11 800×=118(人),12 000×=120(人).总样本量为310的学生的近视率为×80%+×70%+×36%≈59%.在比例分配的分层随机抽样中,我们直接用样本平均数估计总体平均数,所以可以估计该地区全体中小学生的近视率为59%.
(2)抽取的样本的近视率是×80%+×70%+×36%≈55%.
用各层的样本平均数估计该层的总体平均数,由总体量为7 200+11 800+12 000=31 000,得总体平均数为×80%+×70%+×36%≈59%,即该地区全体中小学生的近视率约为59%.
9.D 选项D中某型号炮弹的射程一般通过试验获取.
10.C 建造“中国天眼”的目的是通过观察获取数据.
高中数学人教A版 (2019)必修 第二册第九章 统计9.1 随机抽样练习: 这是一份高中数学人教A版 (2019)必修 第二册<a href="/sx/tb_c4000309_t7/?tag_id=28" target="_blank">第九章 统计9.1 随机抽样练习</a>,共31页。试卷主要包含了5%,中年人占37等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册9.1 随机抽样随堂练习题: 这是一份高中数学人教A版 (2019)必修 第二册9.1 随机抽样随堂练习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册9.1 随机抽样课后练习题: 这是一份高中数学人教A版 (2019)必修 第二册9.1 随机抽样课后练习题,共6页。试卷主要包含了研究下列问题,解析等内容,欢迎下载使用。