搜索
    上传资料 赚现金
    6.3 对数函数练习题01
    6.3 对数函数练习题02
    6.3 对数函数练习题03
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学苏教版 (2019)必修 第一册6.3 对数函数精练

    展开
    这是一份高中数学苏教版 (2019)必修 第一册6.3 对数函数精练,共22页。试卷主要包含了下列函数为对数函数的是等内容,欢迎下载使用。

    6.3 对数函数
    基础过关练
    题组一 对数函数的概念
    1.下列函数为对数函数的是(  )                 
    A.y=loga(2x) B.y=log22x
    C.y=log2x+1 D.y=lg x
    2.若函数f(x)=logax+(a2-4a-5)是对数函数,则实数a=    . 
    3.已知f(x)为对数函数, f12=-2,则f(34)=    . 
    题组二 对数及对数型函数的图象及简单应用
    4.函数f(x)=loga(2x-3)-4(a>0,a≠1)的图象恒过定点(  )
    A.(1,0) B.(1,4)
    C.(2,0) D.(2,-4)
    5.已知lg a+lg b=0(a>0,b>0,a≠1,b≠1),则函数f(x)=ax与函数g(x)=-logbx的图象可能是(  )


    6.如图所示的是对数函数y=logax(a>0,a≠1)的图象,已知a的值可取2,32,34,15,则曲线C1,C2,C3,C4相对应的a值依次为(  )

    A.34,15,2,32 B.15,34,32,2
    C.32,2,15,34 D.15,34,2,32
    题组三 反函数
    7.(2019江苏苏州实验中学高一上学期期中考试)下列与函数y=log2x的图象关于直线y=x对称的图象对应的函数解析式是(  )
    A.y=2x B.y=-2x
    C.y=log2(-x) D.y=-log2x
    8.(2020陕西渭南临渭尚德中学高一上学期期中)函数y=f(x)的图象与函数y=5x(x∈R)的图象关于直线y=x对称,则f(x)=      . 
    9.(2020陕西安康汉滨高一上学期月考)若函数y=loga(2x-3)+22 的图象过定点(m,n),则函数y=lognx的反函数是    . 
    题组四 对数函数的图象变换
    10.(2018山西运城康杰中学高一期中)函数y=loga(-x)(a>0且a≠1)与函数y=ax(a>0且a≠1)在同一平面直角坐标系内的图象可能是(  )


    11.(2019江苏临泽中学高一上学期期中考试)已知函数y=lg x的图象C,作图象C关于直线y=x的对称图象C1,将图象C1向左平移3个单位后再向下平移2个单位得到图象C2,若图象C2所对应的函数为f(x),则f(-3)=    . 
    题组五 对数及对数型函数的性质及应用
    12.(2019江苏江阴四校高一上学期期中)函数f(x)=lg(x-1)+4-x的定义域为(  )
    A.(1,4] B.(1,4)
    C.[1,4] D.[1,4)
    13.(2019江苏启东中学高一上学期月考)函数f(x)=log12(x2-2x-3)的单调递减区间是(  )
    A.(3,+∞) B.(1,+∞)
    C.(-∞,1) D.(-∞,-1)
    14.(2020江苏淮安高中校协作体高一上学期期中)已知loga23<1(a>0,a≠1),则a的取值范围为(  )
    A.1,32 B.23,1
    C.(0,1)∪1,32 D.0,23∪(1,+∞)
    15.(2019甘肃镇原中学高一上学期期中考试)若函数f(x)=logax(0 A.24 B.22 C.14 D.12
    16.(2019江苏淮阴中学高一上学期期中考试)已知a=21.2,b=12-0.8,c=log123,则a,b,c的大小关系为    .(用“<”连接) 
    17.函数f(x)=log2(3x+1)的值域为    . 
    18.(2018南京外国语学校高一期中考试)关于x的不等式log3(x2-2x)>1的解集为        . 
    19.(2019河南新乡高一上学期期中)已知函数f(x)=log2(x2+a-x)是定义在R上的奇函数,则f34=    . 
    20.(2019北师大实验中学高一期中)设函数f(x)=x2-x+m,且f(log2a)=m,log2 f(a)=2(a≠1).
    (1)求a,m的值;
    (2)求f(log2x)的最小值及对应的x的值.















    21.(2019江苏泰兴第一高级中学高一上学期期中考试)设函数f(x)=loga1+12x,g(x)=loga1-12x(a>0且a≠1),若h(x)=f(x)-g(x).
    (1)求函数h(x)的定义域;
    (2)判断h(x)的奇偶性,并说明理由;
    (3)若f(2)=1,求使h(x)>0成立的x的取值集合.










    能力提升练
    题组一 对数及对数型函数图象的应用
    1.(2019江苏海门中学高一上学期期中,)已知函数f(x)=-x2+2,g(x)=log2|x|,则函数F(x)=f(x)g(x)的图象大致为(  )
                      

    2.()已知函数f(x)=loga(3x+b-1)(a>0,a≠1)的图象如图所示,则下列关系式正确的是(  )

    A.0 C.0 3.()若a,b,c均为正数,且2a=log12a,12b=log12b,12c=log2c,则下列关系式正确的是   .(填序号) 
    ①a 4.()如图所示,过函数f(x)=logcx(c>1)的图象上的两点A,B作x轴的垂线,垂足分别为M(a,0),N(b,0)(b>a>1),线段BN与函数g(x)=logmx(m>c>1)的图象交于点C,且AC与x轴平行.
    (1)当a=2,b=4,c=3时,求实数m的值;
    (2)当b=a2时,求mb-2ca的最小值.







    题组二 对数及对数型函数性质的应用
    5.(2020江苏盐城射阳高一上学期联考,)若a=log13π,b=log3π,c=log4π,则(  )                  
    A.a C.a 6.(2019江苏泰兴第一高级中学高一上学期期中考试,)已知f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)=2x-2,则不等式f(log2x)>0的解集为 (  )
    A.0,12 B.12,1∪(2,+∞)
    C.(2,+∞) D.0,12∪(2,+∞)
    7.(2019吉林省实验中学高一上学期期中考试,)设f(x)=(1-2a)x,x≤1,logax+13,x>1,若存在x1,x2∈R,x1 ≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(  )
    A.0,13 B.13,12
    C.0,12 D.14,13
    8.(2019江苏扬州中学高一上学期月考,)已知函数f(x)=2×4x-a2x的图象关于原点对称,g(x)=ln(ex+1)-bx是偶函数,则logab=(  )
    A.1 B.-12
    C.-1 D.14
    9.()f(x)=|log2x|,02,若a、b、c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(  )
    A.(0,1) B.(0,2)
    C.(1,2) D.(2,4)
    10.(多选)(2020山东师范大学附属中学高三月考,)若函数f(x)的定义域为D,∀x∈D,∃y∈D,使得f(y)=-f(x)成立,则称f(x)为“美丽函数”.下列给出的函数中为“美丽函数”的是(  )
    A.y=x2 B.y=1x-1
    C.y=ln(2x+3) D.y=2x+3
    11.(多选)()已知函数f(x)=lg(x2+ax-a-1),给出下列论述,其中正确的是(  )
    A.当a=0时,f(x)的定义域为(-∞,-1)∪(1,+∞)
    B.f(x)一定有最小值
    C.当a=0时,f(x)的值域为R
    D.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是{a|a≥-4}
    12.(2020山东泰安宁阳第一中学高一月考,)如果函数f(x)=(3a-1)x+4a,x<1,logax,x≥1在R上单调递减,那么a的取值范围是    . 
    13.(2019广东珠海第一学期期末,)已知函数f(x)=loga(2x-a)在区间23,34上恒有f(x)>0,则实数a的取值范围是    . 
    14.(2019江苏南通高级中学高一上学期期中,)设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为a2,b2,则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是    . 
    15.(2020河北承德第一中学高一上学期月考,)已知函数f(x)=log12(x2-mx-m).
    (1)若m=1,求函数f(x)的定义域;
    (2)若函数f(x)的值域为R,求实数m的取值范围;


    (3)若函数f(x)在区间(-∞,1-3)上是增函数,求实数m的取值范围.







    16.(2020浙江宁波北仑中学高一上学期期中,)已知a∈R,f(x)=log2(1+ax).
    (1)若a<0,求f(x2)的值域;
    (2)若关于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集中恰有一个元素,求实数a的取值范围;
    (3)当a>0时,对任意的t∈13,+∞,f(x2)在[t,t+1]上的最大值与最小值的差不超过2,求a的取值范围.









    答案全解全析
    6.3 对数函数
    基础过关练
    1.D 选项A,B,C中的函数都不具有y=logax(a>0,a≠1)的形式,只有选项D中的函数符合.
    2.答案 5
    解析 由对数函数的定义可知,a2-4a-5=0,a>0,a≠1,
    解得a=5.
    3.答案 43
    解析 设f(x)=logax(a>0,a≠1),则loga12=-2,∴1a2=12,解得a=2,∴f(x)=log2x,∴f(34)=log234=log2243=43.
    4.D 令2x-3=1,得x=2,此时f(2)=loga1-4=-4,故函数f(x)的图象恒过定点(2,-4).故选D.
    5.B ∵lg a+lg b=0(a>0,b>0,a≠1,b≠1),∴ab=1,∴b=1a,∴g(x)=-logbx=-log1ax=logax,∴函数f(x)=ax与函数g(x)=-logbx=logax的图象关于直线y=x对称,故选B.
    6.B 当a>1时,图象单调递增,当0 7.A 与函数y=log2x的图象关于直线y=x对称的图象对应的函数解析式是x=log2y,即y=2x.故选A.
    8.答案 log5x,x>0
    解析 因为同底的指数函数和对数函数互为反函数,并且互为反函数的两个函数图象关于直线y=x对称,所以f(x)=log5x,x>0.
    9.答案 y=22x
    解析 ∵对数函数y=logax(a>0,a≠1)过定点(1,0),∴函数y=loga(2x-3)+22过定点2,22,∴n=22,∴函数y=lognx的反函数是y=22x.
    10.A 当01时,y=ax和y=logax均为增函数,而y=loga(-x)的图象和y=logax的图象关于y轴对称,结合选项可得A符合.
    11.答案 -1
    解析 函数y=lg x的图象C关于直线y=x的对称图象C1对应的函数为y=10x,将图象C1向左平移3个单位后再向下平移2个单位得到图象C2,则C2对应的函数为f(x)=10x+3-2,故f(-3)=1-2=-1.
    12.A 要使函数有意义,需满足x-1>0,4-x≥0,
    解得1 13.A f(x)=log12(x2-2x-3)是由t=x2-2x-3和y=log12t复合而成的,由x2-2x-3>0,得x<-1或x>3,故函数f(x)的定义域为{x|x<-1或x>3},又因为函数y=log12t在定义域内单调递减,所以f(x)=log12(x2-2x-3)的递减区间是二次函数t=x2-2x-3在定义域内的递增区间,即为(3,+∞).
    14.D 由题意知loga23<1=logaa,
    当a>1时,231;
    当0 解得0 综上,a的取值范围为0,23∪(1,+∞).
    故选D.
    15.A 因为函数f(x)=logax(0 16.答案 c 解析 1 17.答案 (0,+∞)
    解析 ∵3x>0,∴3x+1>1,∴log2(3x+1)>0,∴函数f(x)的值域为(0,+∞).
    18.答案 (-∞,-1)∪(3,+∞)
    解析 由题意得x2-2x>3,解得x<-1或x>3,故原不等式的解集为(-∞,-1)∪(3,+∞).
    19.答案 -1
    解析 因为函数f(x)=log2(x2+a-x)是定义在R上的奇函数,所以f(0)=log2a=0,解得a=1.
    故f34=log2(34) 2+1-34=log212=-1.
    20.解析 (1)∵f(log2a)=(log2a)2-log2a+m=m(a≠1),
    ∴log2a(log2a-1)=0,∴a=1(舍去)或a=2,
    ∴log2f(a)=log2f(2)=log2(m+2)=2,
    ∴m=2.
    综上,a=2,m=2.
    (2)由(1)得f(x)=x2-x+2=x-122+74.
    当x=12时,f(x)取得最小值74,
    ∴log2x=12时,f(log2x)取得最小值.
    ∴x=2时,f(log2x)取得最小值,最小值为74.
    21.解析 (1)由1+12x>0且1-12x>0,得-2 (2)h(x)为奇函数.理由如下:
    ∵x∈(-2,2),∴-x∈(-2,2).
    ∵h(-x)=f(-x)-g(-x)=loga1-12x-loga1+12x=g(x)-f(x)=-h(x),且h(x)的定义域关于原点对称,∴h(x)为奇函数.
    (3)由f(2)=1,得a=2,此时h(x)=log21+12x-log21-12x,
    由h(x)>0得1+12x>1-12x,∴x>0,又由(1)知-2 ∴x的取值集合为{x|0 能力提升练
    1.B 由题意得,函数f(x)、g(x)均为偶函数,∴函数F(x)=f(x)g(x)为偶函数,其图象关于y轴对称,排除A、D.当x>2时,f(x)=-x2+2<0,g(x)=log2|x|>0,则F(x)<0,排除C,故选B.
    2.A 由题图可得a>1,则0 当x=0时,y=logab,
    结合题图可得-1 即-1=loga1a 又y=logab为单调递增函数,
    所以0 3.答案 ①
    解析 在同一平面直角坐标系中分别作出函数y=2x,y=12x,y=log2x,y=log12x的图象,如图所示.

    由题意及图可知,函数y=2x与y=log12x图象交点的横坐标为a,y=12x与y=log12x图象交点的横坐标为b,y=12x与y=log2x图象交点的横坐标为c,从图象可以看出a 4.解析 (1)由题意得A(2,log32),B(4,log34),C(4,logm4).
    因为AC与x轴平行,所以logm4=log32,所以m=9.
    (2)由题意得A(a,logca),B(b,logcb),
    C(b,logmb).
    因为AC与x轴平行,所以logmb=logca,
    因为b=a2,所以m=c2,
    所以mb-2ca=c2a2-2ca=ca-12-1,
    所以当ca=1时,mb-2ca取得最小值-1.
    5.A 由已知得a=log13π 又因为b=log3π=1logπ3>0,c=log4π=1logπ4>0,logπ31logπ4,即b>c,
    所以a 故选A.
    6.D ∵当x∈[0,+∞)时,f(x)=2x-2,
    ∴f(1)=0,
    又∵当x∈[0,+∞)时,f(x)为增函数,且f(x)在R上为偶函数,
    ∴当f(x)>0时,x>1或x<-1,故原不等式等价于log2x>1或log2x<-1,解得x>2或0 7.B ∵f(x)=(1-2a)x,x≤1,logax+13,x>1,
    ∴1-2a>0,1-2a≠1,a>0,a≠1,
    ∴0 故当x≤1时,函数为减函数;当x>1时,函数为减函数.
    ∵存在x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,不妨设x1≤1,x2>1,
    ∴(1-2a)x1=logax2+13,
    ∵(1-2a)x1≥1-2a,logax2+13<13,
    ∴1-2a<13,∴a>13.
    故实数a的取值范围是13,12.
    8.C 若函数f(x)=2×4x-a2x=2·2x-a2x的图象关于原点对称,则f(-x)=-f(x),即2·12x-a·2x=a2x-2·2x,解得a=2.因为g(x)是偶函数,所以g(-x)=ln(e-x+1)+bx=lnex+1ex+bx=ln(ex+1)+(b-1)x=ln(ex+1)-bx,解得b=12,
    所以logab=log212=-1.
    9.D 作出函数f(x)=|log2x|,02的图象如图:

    不妨设a 即log2a=-log2b,则log2(ab)=0,
    所以ab=1,
    又由图象可知2 故选D.
    10.BCD 由题意知,函数f(x)的值域关于原点对称.
    对于A,函数y=x2的值域为[0,+∞),不关于原点对称,不符合题意;
    对于B,函数y=1x-1的值域为(-∞,0)∪(0,+∞),关于原点对称,符合题意;
    对于C,函数y=ln(2x+3)的值域为R,关于原点对称,符合题意;
    对于D,函数y=2x+3的值域为R,关于原点对称,符合题意.
    故选BCD.
    11.AC 对于A,当a=0时,由x2-1>0得x∈(-∞,-1)∪(1,+∞),故A正确;
    对于B,当a=0时, f(x)=lg(x2-1),所以x∈(-∞,-1)∪(1,+∞),x2-1∈(0,+∞),
    所以f(x)=lg(x2-1)的值域为R,故B错误,C正确;
    对于D,y=x2+ax-a-1图象的对称轴为直线x=-a2,若f(x)在区间[2,+∞)上单调递增,则-a2≤2,解得a≥-4.当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.
    故选AC.
    12.答案 17,13
    解析 因为函数f(x)=(3a-1)x+4a,x<1,logax,x≥1在R上单调递减,
    所以3a-1<0,0 解得17≤a<13.
    13.答案 12,1
    解析 函数f(x)=loga(2x-a)在区间23,34上恒有f(x)>0,等价于在区间23,34上f(x)min>0.
    当a>1时,f(x)在R上单调递增,则f23>0,即2×23-a>1,解得a<13,不合题意;
    当00,即2×34-a<1,解得a>12,所以12 综上,实数a的取值范围是12,1.
    14.答案 0,14
    解析 ∵函数f(x)=log2(2x+t)为“倍缩函数”,∴存在[a,b]⊆D,使f(x)在[a,b]上的值域为a2,b2,∴f(x)在[a,b]上是增函数,∴log2(2a+t)=a2,log2(2b+t)=b2,
    即2a+t=2a2,2b+t=2b2,
    ∴方程2x-2x2+t=0,且有两个不相等的实数根,设2x2=m(m>0),则m2-m+t=0,且有两个大于零的不相等的实数根,
    ∴Δ=1-4t>0,m1+m2>0,m1m2=t>0,解得0 15.解析 (1)若m=1,则f(x)=log12(x2-x-1),要使函数有意义,需使x2-x-1>0,解得x∈-∞,1-52∪1+52,+∞,
    故函数f(x)的定义域为-∞,1-52∪1+52,+∞.
    (2)∵函数f(x)的值域为R,
    ∴x2-mx-m>0对一切正实数均成立,
    ∴Δ=m2+4m≥0,即m∈(-∞,-4]∪[0,+∞),
    ∴实数m的取值范围为(-∞,-4]∪[0,+∞).
    (3)若函数f(x)在区间(-∞,1-3)上是增函数,则根据复合函数的同增异减原则,
    得t=x2-mx-m在区间(-∞,1-3)上是减函数,且x2-mx-m>0在区间(-∞,1-3)上恒成立,故m2≥1-3,且(1-3)2-m(1-3)-m≥0,
    即m≥2-23且m≤2,
    ∴m∈[2-23,2].
    16.解析 (1)f(x2)=log2(1+ax2),当a<0时,0<1+ax2≤1,故f(x2)∈(-∞,0],即f(x2)的值域为(-∞,0].
    (2)由题意得log2(1+ax)=log2[(a-4)x2+(2a-5)x],
    则1+ax=(a-4)x2+(2a-5)x,1+ax>0,
    即(a-4)x2+(a-5)x-1=0.
    当a=4时,x=-1,不符合1+ax>0.
    当Δ=0,即a=3时,x=-1,也不符合1+ax>0.
    当a≠4且a≠3时,方程的解为x1=1a-4,x2=-1,
    若x1是方程的解,
    需1+aa-4>0,解得a>4或a<2,
    若x2是方程的解,需1-a>0,即a<1.
    综上,a∈[1,2)∪(4,+∞).
    (3)∵当a>0时,对任意的t∈13,+∞,f(x2)在[t,t+1]上单调递增,
    ∴f[(t+1)2]-f(t2)=log2[1+a(t+1)2]-log2(1+at2)≤2,
    即1+a(t+1)21+at2≤4,整理得a(3t2-2t-1)+3≥0,
    又∵t∈13,+∞,
    ∴3t2-2t-1∈-43,+∞,
    ∴-43a+3≥0,解得a≤94,
    ∴a的取值范围是0,94.


    相关试卷

    知识讲解_对数函数及其性质_基础练习题: 这是一份知识讲解_对数函数及其性质_基础练习题,共8页。

    考点16 对数函数-练习题: 这是一份考点16 对数函数-练习题,共7页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。

    数学必修 第一册4.4 对数函数课后作业题: 这是一份数学必修 第一册4.4 对数函数课后作业题,共6页。试卷主要包含了给出下列函数,求下列函数的定义域等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        6.3 对数函数练习题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map