资料中包含下列文件,点击文件名可预览资料内容
还剩15页未读,
继续阅读
成套系列资料,整套一键下载
人教版六年级上册数学5.7扇形的认识+考点+课本习题+PPT课件【易懂通课堂】
展开
这是一份null,共30页。PPT课件主要包含了什么是扇形,圆心角,特殊的扇形,填空题等内容,欢迎下载使用。
这些物体的外形有什么相同的地方吗?
它们的外形都是扇形的。
图上A、B两点之间的部分叫做弧,读作“弧AB”。
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
即时练习:指出下列物体中的扇形。
小组讨论:在同一个圆中,扇形的大小与什么有关系呢?
我发现在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
以半圆为弧的扇形的圆心角是180°。
1.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。扇形是圆的一部分。 2.在同一个圆中,圆心角越大,扇形越大;在不同的圆中,圆心角相同的扇形,半径越大,扇形越大。
1. 指出下列物体中的扇形。
(1)扇形都有一个角,这个角的顶点在( )。(2)同一个圆中,扇形的大小与这个扇形的 ( )的大小有关。(3)一个圆可以分成( )个圆心角是180° 的扇形。
3.求下面扇形的周长与面积。
4.下列每个正方形边长是2㎝,求阴影部分的 面积。
×3.14×22 -2×(2×2)÷2 =6.28-4=2.28(cm2)答:阴影部分的面积为2.28 cm2。
下面图形的阴影部分是扇形的画“√”。
5.“圆心角越大,扇形的面积就越大”这句话对吗?为什么?
不对,扇形的大小由半径长短和圆心角大小两个条件决定。
辨析:扇形面积的大小与半径也有关系,所以在判断扇形面积大小时不仅要考虑圆心角,还需要考虑半径。
5.如图,图形的半径是5cm,涂色部分所表示的扇形的圆心角是60°,求扇形的面积。(得数保留整数)
5×5×3.14=78.5(平方厘米)60°÷360°=78.5× ≈13(平方厘米)答:扇形的面积是13平方厘米。
1.求下面图形中涂色部分的面积。(单位:cm)
8×8-3.14×(8÷2)²=13.76(cm²)
5.你在生活中见过下面这些图案吗?
像下面这样一个圆环被截得的部分叫做扇环。你能求出下面各扇环的面积吗?
4-1=3(dm)3.14×(4²-3²)× =10.99(dm2)
1.在同一个圆中,圆心角越大,扇形越大;在不同的圆中,圆心角相同的扇形,半径越大,扇形越大。2.扇形的面积占圆的面积的几分之几与扇形的圆心角度数占360°的几分之几相同。
6.求阴影部分的面积。
这些物体的外形有什么相同的地方吗?
它们的外形都是扇形的。
图上A、B两点之间的部分叫做弧,读作“弧AB”。
一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
即时练习:指出下列物体中的扇形。
小组讨论:在同一个圆中,扇形的大小与什么有关系呢?
我发现在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。
以半圆为弧的扇形的圆心角是180°。
1.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。扇形是圆的一部分。 2.在同一个圆中,圆心角越大,扇形越大;在不同的圆中,圆心角相同的扇形,半径越大,扇形越大。
1. 指出下列物体中的扇形。
(1)扇形都有一个角,这个角的顶点在( )。(2)同一个圆中,扇形的大小与这个扇形的 ( )的大小有关。(3)一个圆可以分成( )个圆心角是180° 的扇形。
3.求下面扇形的周长与面积。
4.下列每个正方形边长是2㎝,求阴影部分的 面积。
×3.14×22 -2×(2×2)÷2 =6.28-4=2.28(cm2)答:阴影部分的面积为2.28 cm2。
下面图形的阴影部分是扇形的画“√”。
5.“圆心角越大,扇形的面积就越大”这句话对吗?为什么?
不对,扇形的大小由半径长短和圆心角大小两个条件决定。
辨析:扇形面积的大小与半径也有关系,所以在判断扇形面积大小时不仅要考虑圆心角,还需要考虑半径。
5.如图,图形的半径是5cm,涂色部分所表示的扇形的圆心角是60°,求扇形的面积。(得数保留整数)
5×5×3.14=78.5(平方厘米)60°÷360°=78.5× ≈13(平方厘米)答:扇形的面积是13平方厘米。
1.求下面图形中涂色部分的面积。(单位:cm)
8×8-3.14×(8÷2)²=13.76(cm²)
5.你在生活中见过下面这些图案吗?
像下面这样一个圆环被截得的部分叫做扇环。你能求出下面各扇环的面积吗?
4-1=3(dm)3.14×(4²-3²)× =10.99(dm2)
1.在同一个圆中,圆心角越大,扇形越大;在不同的圆中,圆心角相同的扇形,半径越大,扇形越大。2.扇形的面积占圆的面积的几分之几与扇形的圆心角度数占360°的几分之几相同。
6.求阴影部分的面积。
相关资料
更多