北师大版七年级上册2.4 有理数的加法教案
展开
这是一份北师大版七年级上册2.4 有理数的加法教案,共4页。教案主要包含了教学目标,教学重难点,教学方法,教学过程,板书设计,教学反思等内容,欢迎下载使用。
有理数的加法 【教学目标】1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。【教学重难点】重点:有理数加法法则。难点:异号两数相加的法则。【教学方法】启发式教学现代课堂教学手段【教学过程】一、师生共同研究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。这节课我们来研究两个有理数的加法。两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量。若我们规定赢球为“正”,输球为“负”。比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球。也就是(+3)+(+2)=+5. (2)上半场输了2球,下半场输了1球,那么全场共输了3球。也就是(-2)+(-1)=-3.现在,请同学们说出其他可能的情形。答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; 上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0. 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和。但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法。现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数。二、应用举例 变式练习例1 计算下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4); (5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2); (8)(-9)+0; (9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则。进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值。解:(1) (-3)+(-9) (两个加数同号,用加法法则的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算下列各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评。三、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则。今后我们经常要用类似的思想方法研究其他问题。应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。四、练习设计1.计算:(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59); (7)33+48; (8)(-56)+37.2.计算:(1)(-0.9)+(-2.7);(2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.3*.用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0;4*.分别根据下列条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0; (2) a<0,b<0;(3)a>0,b<0,|a|>|b|; (4)a>0,b<0,|a|<|b|。【板书设计】 有理数的加法(一)知识回顾 (三)例题解析 (五)课堂小结 例1.例2(二)观察发现 (四)课堂练习 练习设计 【教学反思】“有理数加法法则”的教学,可以有多种不同的设计方案。大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计。现在,试比较这两类教学设计的得失利弊。第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好。第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识。这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题。但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的。第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会。权衡利弊,我们主张采用第二种教学方法。
相关教案
这是一份数学七年级上册2.4 有理数的加法第2课时教案,共6页。
这是一份数学七年级上册第二章 有理数及其运算2.4 有理数的加法教学设计及反思,共3页。教案主要包含了第一课时,教学目标,教学重难点,教学过程,作业布置等内容,欢迎下载使用。
这是一份初中数学北师大版七年级上册2.4 有理数的加法教案设计,共3页。教案主要包含了教学目标,教学重难点,教学准备,预习导学,教学过程,作业布置,教学反思等内容,欢迎下载使用。