冀教版九年级下册30.5 二次函数与一元二次方程的关系教学ppt课件
展开1.通过探索,理解二次函数与一元二次方程之间的联系.(难点)2.能运用二次函数及其图像、性质确定方程的解.(重点)3.了解用图像法求一元二次方程的近似根.
我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解. 问题:现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?
思考 观察思考下列二次函数的图像与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.
x2-6x+9=0,x1=x2=3
x2+x-2=0,x1=-2,x2=1
二次函数y=ax2+bx+c的图像与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系
例:求一元二次方程 的根的近似值(精确到0.1).
分析:一元二次方程 x²-2x-1=0 的根就是抛物线 y=x²-2x-1 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
解:画出函数 y=x²-2x-1 的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.
先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:
观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.
一元二次方程的图象解法
利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.
(1)用描点法作二次函数 y=2x2+x-15的图象;
(2)观察估计二次函数 y=2x2+x-15的图象与x轴的交点的横坐标;
由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);
(3)确定方程2x2+x-15=0的解;
由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.
一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c 与直线y=m(m是实数)图象交点的横坐标 .
既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.
判断方程 ax2+bx+c =0 (a≠0,a,b,c为常数)一个解x的范围是( ) A. 3< x < 3.23 B. 3.23 < x < 3.24 C. 3.24
2.若二次函数y=-x2+2x+k的部分图像如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2= ;
3.一元二次方程 3 x2+x-10=0的两个根是x1=-2 ,x2= ,那么二次函数 y= 3 x2+x-10与x轴的交点坐标是 .
解:(1)x1=2,x2=4;
(2)x<2或x>4;
初中30.5 二次函数与一元二次方程的关系精品ppt课件: 这是一份初中30.5 二次函数与一元二次方程的关系精品ppt课件,文件包含305二次函数与一元二次方程的关系课件ppt、305二次函数与一元二次方程的关系教案doc等2份课件配套教学资源,其中PPT共25页, 欢迎下载使用。
冀教版九年级下册30.5 二次函数与一元二次方程的关系优秀ppt课件: 这是一份冀教版九年级下册30.5 二次函数与一元二次方程的关系优秀ppt课件,文件包含河北教育版数学九年级下·305二次函数与一元二次方程的关系教学课件pptx、305二次函数与一元二次方程的关系教案docx、305二次函数与一元二次方程的关系同步练习docx等3份课件配套教学资源,其中PPT共16页, 欢迎下载使用。
冀教版九年级下册第30章 二次函数30.5 二次函数与一元二次方程的关系教学演示课件ppt: 这是一份冀教版九年级下册第30章 二次函数30.5 二次函数与一元二次方程的关系教学演示课件ppt,共17页。PPT课件主要包含了有两个交点,有两个不相等的实数根,b2-4ac0,有一个交点,有两个相等的实数根,没有交点,没有实数根,x2-x+10无解,或-1或2,-1x20等内容,欢迎下载使用。