初中数学北京课改版九年级上册19.4 二次函数的应用学案及答案
展开二次函数
知识点:二次函数的应用
温故
1、当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点。
2、当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点。
3、抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的。
知新
根据实际问题列二次函数关系式:
根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题。需要注意的是实例中的函数图象要根据自变量的取值范围来确定。
列二次函数解决实际问题的一般步骤:
步骤 | 目的 |
审题 | 了解题意,确定自变量与因变量 |
确定数量关系 | 根据题中数量关系列出等式 |
计算 | 根据题意求解极值或特定函数值 |
【例】如图,一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表.那么s与t之间的函数关系式是s= .
时间t/s | 1 | 2 | 3 | 4 | … |
距离s/m | 2 | 8 | 18 | 32 | … |
老师有话说
其实,二次函数本质上就是二元一次方程,因此列二次函数表达式最关键在于找到题中的等量关系。这一点上二次函数的应用与之前所学过的一元一次方程、二元一次方程、一次函数并没有什么不同。
【当堂演练】
1、下列函数关系中,可以看做二次函数y=ax2+bx+c(a≠0)模型的是( )
A.在一定的距离内汽车的行驶速度与行驶时间的关系
B.我国人口年自然增长率1%,这样我国人口总数随年份的关系
C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)
D.圆的周长与圆的半径之间的关系
2、在半径为4cm的圆中,挖去一个半径为xcm的圆面,剩下一个圆环的面积为ycm2,则y与x的函数关系式为( )
A.y=πx2﹣4 B.y=π(2﹣x)2 C.y=﹣(x2+4) D.y=﹣πx2+16π
3、某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是( )
A.y=x2+a B.y=a(x﹣1)2 C.y=a(1﹣x)2 D.y=a(1+x)2
4、在边长为6 cm的正方形中间剪去一个边长为x cm(x<6)的小正方形,剩下的四方框形的面积为y,y与x之间的函数关系是 .
5、如图,在△ABC中,AB=AC,点D在BC上,DE∥AC,交AB与点E,点F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y与x的函数关系式,并写出自变量x的取值范围.
【百炼成钢】
1、用总长为60的篱笆围成矩形场地,矩形面积随矩形一边长的变化而变化,若要场地面积取得最大值,则应取( )
A.10 B.15 C.20 D.25
2、国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为( )
A、 B、 C、 D、
3、如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是( )
A、 B、 C、 D、
4、有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为_________.
5、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形的面积之和的最小值是___________.
6、为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.求y与x之间的函数关系式,并写出自变量x的取值范围.
7、2006年4月22日至10月22日世界休闲博览会在杭州举行. 某厂经有关部门批准,生产“休博会”吉祥物“晶晶”,每日最高产量为40只,且每日的产品全部售出,已知生产只吉祥物“晶晶”的成本为(元),售价每只为P(元),、P与的函数解析式分别是(1)这批玩具的毛利润(总售价-总成本) y (元)关于x的函数关解析式;(2)当日产量为多少时,可获得最大利润?最大利润是多少?
8、在目前国内最大跨径的钢管混凝土拱桥——永和大桥,是南宁市又一标志性建筑,其拱形图形为抛物线的一部分(如图1),在正常情况下。位于水面上的桥拱跨度为350m,拱高为85米。
(1)在所给的直角坐标系中(图2),假设抛物线的表达式为,请你根据上述数据求出、的值,并写出抛物线的表达式(不要求写自变量的取值范围,、的值保留两个有效数字)。
(2)七月份汛期将要来临,当邕江水位上涨后,位于水面上的桥拱跨度将会减小,当水位上涨4m时,位于水面上的桥拱跨度有多大?(结果保留整数)
9、如图,以 40m/s的速度将小球沿与地面成角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度(单位:m)与飞行时间(单位:s)之间具有关系.
考虑以下问题
(1)球的飞行高度能否达到 15m?如能,需要多少飞行时间?
(2)球的飞行高度能否达到 20m?如能,需要多少飞行时间?
(3)球的飞行高度能否达到 20.5m?为什么?
(4)球从飞出到落地要用多少时间?
10、某商店如果将进价为每件8元的某种商品按每件10元出售,每天可销售100件。为了增加利润,该商店决定提高售价,但该商品单价每提高1元,销售量要减少10件。问当售价定为多少时,才能使每天的利润最大?并求最大利润.
11、图中是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加多少?
12、如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).
(1)如果所围成的花圃的面积为45m2,试求宽AB的长;
(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
13、某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.
(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;
(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?
14、已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.
(1)求这个二次函数的解析式;
(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;
(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.
15、如图,小河上有一拱桥,拱桥及河道的截面轮廓有抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系。
(1)求抛物线的解析式;
(2)已知从某时刻开始的40个小时内,水面与河底ED的距离h(米)随时间(时)的变化满足函数关系:,且当顶点C到水面的距离不大于5米时,需禁止船只通行。请通过计算说明:在这一时段内,需多少小时禁止船只通过?
初中数学北京课改版九年级上册21.1 圆的有关概念学案设计: 这是一份初中数学北京课改版九年级上册21.1 圆的有关概念学案设计,共8页。学案主要包含了当堂演练,百炼成钢等内容,欢迎下载使用。
北京课改版九年级上册21.4 圆周角学案设计: 这是一份北京课改版九年级上册21.4 圆周角学案设计,共9页。学案主要包含了当堂演练,百炼成钢等内容,欢迎下载使用。
初中数学北京课改版九年级上册20.5 测量与计算学案: 这是一份初中数学北京课改版九年级上册20.5 测量与计算学案,共9页。学案主要包含了当堂演练,百炼成钢等内容,欢迎下载使用。