![2021-2022学年度北师版九年级数学下册教案 2 用关系式表示的变量间关系第1页](http://img-preview.51jiaoxi.com/2/3/12339903/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度北师版九年级数学下册教案 2 用关系式表示的变量间关系第2页](http://img-preview.51jiaoxi.com/2/3/12339903/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第三章 变量之间的关系2 用关系式表示的变量间关系教案及反思
展开
这是一份2021学年第三章 变量之间的关系2 用关系式表示的变量间关系教案及反思,共4页。
2 用关系式表示的变量间关系教学目标一、基本目标1.能根据具体情境用关系式表示某些变量之间的关系.2.能根据关系式求值,初步体会自变量和因变量的数值对应关系.二、重难点目标【教学重点】找出题中的自变量和因变量.【教学难点】根据关系式找自变量和因变量之间的对应关系.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P66~P67的内容,完成下面练习.【3 min反馈】1.(教材P66引入问题)如图,三角形ABC底边BC上的高是6 cm.当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是底边BC长,因变量是△ABC的面积;(2)如果三角形的底边长为x( cm),那么三角形的面积y( cm2)可以表示为y=3x;(3)当底边长从12 cm变化到3 cm时,三角形的面积从36 cm2变化到9 cm2.2.(教材P67“议一议”)“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳(特别是二氧化碳)的排放量的一种生活方式.如下表:排碳计算公式家居用电的二氧化碳排放量(kg)=耗电量(kW·h)×0.785开私家车的二氧化碳排放量(kg)=耗油量(L)×2.7家用天然气二氧化碳排放量(kg)=天然气使用量(m3)×0.19家用自来水二氧化碳排放量(kg)=自来水使用量(t)×0.91(1)用字母表示家居用电的二氧化碳排放量的公式为y=0.785x,其中的字母表示y表示家居用电的二氧化碳排放量,x表示耗电量;(2)在上述关系式中,耗电量每增加1 kW·h,二氧化碳排放量增加0.875 kg.当耗电量从1 kW·h增加到100 kW·h时,二氧化碳排放量从0.875 kg增加到87.5 kg;(3)小明家本月用电大约110 kW·h、天然气20 m3、自来水5 t、耗油75 L,请你计算一下小明家这几项的二氧化碳排放量.解:110×0.785+75×2.7+20×0.19+5×0.91=297.2(kg).即小明家这几项的二氧化碳排放量是297.2 kg.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:时间t(s)1234…距离s(m)281832…写出用t表示s的关系式为________.【互动探索】(引发学生思考)观察表中给出的t与s的对应值→分析数据→归纳得出关系式.【分析】t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s=2×42,…所以s与t的关系式为s=2t2,其中t≥0.【答案】s=2t2(t≥0)【互动总结】(学生总结,老师点评)(1)关系式一般是用含有自变量的代数式表示因变量的等式;(2)关系式通常把因变量写在等号的左边,含有自变量的代数式写在等号的右边;(3)利用关系式可以根据任何一个符合条件的自变量的值求出因变量的值,但已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,不要代错了.【例2】一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所示:行驶时间t(h)01234…油箱中剩余油量Q(L)5446.53931.524…根据表格中的信息,解答下列问题:(1)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6 h后,油箱中的剩余油量;(2)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?【互动探索】(引发学生思考)(1)分析表中数据可知,每行驶1 h耗油量为7.5 L,由此可写出油箱中剩余油量Q(L)与行驶时间t(h)的关系式;(2)由(1)知,汽车每小时耗油7.5 L,油箱原有汽油54 L,用后者除以前者即可求出油箱中原有汽油可以供汽车行驶多少小时.【解答】(1)Q=54-7.5t.把t=6代入,得Q=54-7.5×6=9.即这辆汽车在连续行驶6 h后,油箱中剩余油量为9 L.(2)54÷7.5=7.2(h).即这辆车在中途不加油的情况下,最多能连续行驶7.2 h.【互动总结】(学生总结,老师点评)观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.活动2 巩固练习(学生独学)1.变量x与y之间的关系式是y=x2-3,当自变量x=2时,因变量y的值是( C )A.-2 B.-1 C.1 D.22.图中的圆点是有规律地从里到外逐层排列的,设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( B )A.y=4n-4 B.y=4nC.y=4n+4 D.y=n23.如图是一个简单的数值运算程序,当输入x的值为1时,则输出的数值为2.―→―→―→4.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?解:(1)Q=800-50t(0≤t≤16).(2)当t=6时,Q=800-50×6=500.即6小时后池中还剩500立方米水.(3)当Q=200时,800-50t=200,解得t=12.即12小时后,池中还有200立方米的水.环节3 课堂小结,当堂达标(学生总结,老师点评)求变量之间关系式的“三途径”:(1)根据表格中所列的数据,归纳、总结两个变量的关系式;(2)利用公式写出两个变量之间的关系式;(3)结合实际问题写出两个变量之间的关系式.练习设计请完成本课时对应练习!
相关教案
这是一份初中北师大版2 图形的全等教案,共4页。
这是一份北师大版七年级下册2 频率的稳定性教案设计,共7页。
这是一份2021学年4 用尺规作角教案,共2页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)