- 2021年山东省淄博市中考数学试卷 试卷 1 次下载
- 2021年辽宁省沈阳市中考数学试卷 试卷 3 次下载
- 2021年内蒙古鄂尔多斯市中考数学试卷 试卷 3 次下载
- 2021年辽宁省大连市中考数学试卷 试卷 3 次下载
- 2021年辽宁省阜新市中考数学试卷 试卷 1 次下载
2021年辽宁省锦州市中考数学试卷
展开1.(2分)﹣2的相反数是( )
A.﹣B.C.﹣2D.2
2.(2分)据相关研究,经过40min完全黑暗后,人眼对光的敏感性达到最高点,比黑暗前增加25000倍,将数据25000用科学记数法表示为( )
A.25×103B.2.5×104C.0.25×105D.0.25×106
3.(2分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )
A.B.C.D.
4.(2分)某班50名学生一周阅读课外书籍时间如下表所示:
那么该班50名学生一周阅读课外书籍时间的众数、中位数分别是( )
A.18,16.5B.18,7.5C.7,8D.7,7.5
5.(2分)如图,AM∥BN,∠ACB=90°,∠MAC=35°,则∠CBN的度数是( )
A.35°B.45°C.55°D.65°
6.(2分)二元一次方程组的解是( )
A.B.C.D.
7.(2分)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为( )
A.2B.4C.3D.4
8.(2分)如图,在四边形DEFG中,∠E=∠F=90°,∠DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2.将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是( )
A.B.
C.D.
二、填空题(本大题共8道小题,每小题3分,共24分)
9.(3分)若二次根式有意义,则x的取值范围是 .
10.(3分)甲、乙两名射击运动员参加预选赛,他们每人10次射击成绩的平均数都是9环,方差分别是s2甲=1.2,s2乙=2.4.如果从这两名运动员中选取成绩稳定的一人参赛,那么应选 (填“甲”或“乙”).
11.(3分)一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了300次球,发现有120次摸到红球,则这个口袋中红球的个数约为 .
12.(3分)关于x的一元二次方程x2+2x﹣k=0有两个实数根,则k的取值范围是 .
13.(3分)如图,在△ABC中,AC=4,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为 .
14.(3分)如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为 .
15.(3分)如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为 .
16.(3分)如图,∠MON=30°,点A1在射线OM上,过点A1作A1B1⊥OM交射线ON于点B1,将△A1OB1沿A1B1折叠得到△A1A2B1,点A2落在射线OM上;过点A2作A2B2⊥OM交射线ON于点B2,将△A2OB2沿A2B2折叠得到△A2A3B2,点A2落在射线OM上;…按此作法进行下去,在∠MON内部作射线OH,分别与A1B1,A2B2,A3B3,…,AnBn交于点P1,P2,P3,…Pn,又分别与A2B1,A3B2,A4B3,…,An+1Bn,交于点Q1,Q2,Q3,…,Qn.若点P1为线段A1B1的中点,OA1=,则四边形AnPnQnAn+1的面积为 (用含有n的式子表示).
三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)
17.(6分)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.
18.(8分)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9h.某初中为了解学生每天的睡眠时间,随机调查了部分学生,将学生睡眠时间分为A,B,C,D四组(每名学生必须选择且只能选择一种情况):
A组:睡眠时间<8h
B组:8h≤睡眠时间<9h
C组:9h≤睡眠时间<10h
D组:睡眠时间≥10h
如图1和图2是根据调查结果绘制的不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)被调查的学生有 人;
(2)通过计算补全条形统计图;
(3)请估计全校1200名学生中睡眠时间不足9h的人数.
四、解答题(本大题共2道题,每题8分,共16分)
19.(8分)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
20.(8分)小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.
五、解答题(本大题共2道题,每题8分,共16分)
21.(8分)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
22.(8分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
(1)求证:CE为⊙O的切线;
(2)若DE=1,CD=3,求⊙O的半径.
六、解答题(本题共10分)
23.(10分)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.
(1)求y与x之间的函数关系式;
(2)设销售收入为P(万元),求P与x之间的函数关系式;
(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).
七、解答题(本大题共2道题,每题12分,共24分)
24.(12分)在△ABC中,AC=AB,∠BAC=α,D为线段AB上的动点,连接DC,将DC绕点D顺时针旋转α得到DE,连接CE,BE.
(1)如图1,当α=60°时,求证:△CAD≌△CBE;
(2)如图2,当tanα=时,
①探究AD和BE之间的数量关系,并说明理由;
②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.
25.(12分)如图1,在平面直角坐标系中,直线y=x+1分别与x轴、y轴交于点A,C,经过点C的抛物线y=x2+bx+c与直线y=x+1的另一个交点为点D,点D的横坐标为6.
(1)求抛物线的表达式.
(2)M为抛物线上的动点.
①N为x轴上一点,当四边形CDMN为平行四边形时,求点M的坐标;
②如图2,点M在直线CD下方,直线OM(OM∥CD的情况除外)交直线CD于点B,作直线BD关于直线OM对称的直线BD′,当直线BD′与坐标轴平行时,直接写出点M的横坐标.
2021年辽宁省锦州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共8道小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2分)﹣2的相反数是( )
A.﹣B.C.﹣2D.2
【分析】依据相反数的定义求解即可.
【解答】解:﹣2的相反数是2.
故选:D.
【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
2.(2分)据相关研究,经过40min完全黑暗后,人眼对光的敏感性达到最高点,比黑暗前增加25000倍,将数据25000用科学记数法表示为( )
A.25×103B.2.5×104C.0.25×105D.0.25×106
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.
【解答】解:将数据25000用科学记数法表示为2.5×104,
故选:B.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(2分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )
A.B.C.D.
【分析】根据左视图是从左边看所得到的图形,可直接得到答案.
【解答】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形,
故选:A.
【点评】本题考查了三视图的知识,注意所有的看到的棱都应表现在左视图中.
4.(2分)某班50名学生一周阅读课外书籍时间如下表所示:
那么该班50名学生一周阅读课外书籍时间的众数、中位数分别是( )
A.18,16.5B.18,7.5C.7,8D.7,7.5
【分析】根据众数、中位数的定义,结合表格数据进行判断即可.
【解答】解:由统计表给出的数据可知阅读课外书籍的时间为7小时的有18人,出现的次数最多,所以众数是7,
因为有50个学生,所以第25、26个数的平均数是中位数,又因为25、26个数分别是7,8,所以中位数是7.5.
故选:D.
【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.一组数据中出现次数最多的数据叫做众数.
5.(2分)如图,AM∥BN,∠ACB=90°,∠MAC=35°,则∠CBN的度数是( )
A.35°B.45°C.55°D.65°
【分析】过C点作CF∥AM,利用平行线的性质解答即可.
【解答】解:过C点作CF∥AM,
∵AM∥BN,
∴AM∥CF∥BN,
∴∠MAC=∠ACF,∠CBN=∠FCB,
∵∠ACB=90°,∠MAC=35°,
∴∠CBN=∠FCB=∠ACB﹣∠ACF=∠ACB﹣∠MAC=90°﹣35°=55°,
故选:C.
【点评】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.
6.(2分)二元一次方程组的解是( )
A.B.C.D.
【分析】方程组利用代入消元法求出解即可.
【解答】解:,
把②代入①得:4y+y=10,
解得:y=2,
把y=2代入②得:x=4,
则方程组的解集为.
故选:C.
【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
7.(2分)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为( )
A.2B.4C.3D.4
【分析】连接CO,过点D作DG⊥AB于点G,连接AD,因为CE=2DE,构造△DGE∽△COE,求出DG=3,设GE=x,则OE=2x,DG=3,则AG=6﹣3x,BG=6+3x,再利用△AGD∽△ADB,列出方程即可解决.
【解答】解:连接CO,过点D作DG⊥AB于点G,连接AD,
∵∠BDC=45°,
∴∠CAO=∠CDB=45°,
∵AB为⊙O的直径,
∴∠ACB=∠ADB=90°,
∴∠CAB=∠CBA=45°,
∵BC=6,
∴AB=BC=12,
∵OA=OB,
∴CO⊥AB,
∴∠COA=∠DGE=90°,
∵∠DEG=∠CEO,
∴△DGE∽△COE,
∴=,
∵CE=2DE,
设GE=x,则OE=2x,DG=3,
∴AG=6﹣3x,BG=6+3x,
∵∠ADB=∠AGB=90°,
∠DAG=∠BAD,
∴△AGD∽△ADB,
∴DG2=AG•BG,
∴9=(6﹣3x)(6+3x),
∵x>0,
∴x=,
∴OE=2,
在Rt△OCE中,由勾股定理得:
CE=,
故选:D.
【点评】本题主要考查了圆周角定理,相似三角形的判定与性质,勾股定理等知识,作辅助线构造出△DGE∽△COE是解题的关键.
8.(2分)如图,在四边形DEFG中,∠E=∠F=90°,∠DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2.将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是( )
A.B.
C.D.
【分析】根据移动过程分三个阶段讨论,第一个是点B到达点G之前,即0<x<1时,求出y和x的关系式,确定图象,第二个是点C到达点H之前,即1<x<2时,求出y和x的关系式,确定图象,第三个是点C到达点F之前,即2<x<3时,求出y和x的关系式,确定图象,即可确定选项.
【解答】解:过点D作DH⊥EF,
∵∠DGF=45°,DE=1,FG=3,
∴EH=2,DH=EF=2,
当0<x<1时,重叠部分为等腰直角三角形,且直角边长为x,
∴y=,
∵,
∴该部分图象开口向上,
当1<x<2时,如图,
设A'B'与DG交与点N,A'C'与DG交与点M,
则S重叠=S△GMC'﹣S△GNB',
设B'K=a,则NK=2a,
∵GC'=x,B'C'=1,
∴GB'=x﹣1,
∵△GKN是等腰直角三角形,
∴GK=NK,
∴x﹣1+a=2a,
∴a=x﹣1,
∴NK=2x﹣2,
∴,
∵,
∴S重叠=﹣(x2﹣2x+1)=,
∵,
∴该部分图象开口向下,
当2<x<3时,重叠部分的面积为S△ABC,是固定值,
∴该部分图象是平行x轴的线段,
故选:B.
【点评】本题主要考查动点问题的函数图象,关键是要把移动过程分成几个阶段,然后根据每个阶段的情况单独讨论,确定y和x之间的函数关系式,从而确定图象.
二、填空题(本大题共8道小题,每小题3分,共24分)
9.(3分)若二次根式有意义,则x的取值范围是 x≥ .
【分析】根据被开方数是非负数列不等式求解即可.
【解答】解:根据题意得,2x﹣3≥0,
解得x≥.
故答案为:x≥.
【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数列不等式是解题的关键.
10.(3分)甲、乙两名射击运动员参加预选赛,他们每人10次射击成绩的平均数都是9环,方差分别是s2甲=1.2,s2乙=2.4.如果从这两名运动员中选取成绩稳定的一人参赛,那么应选 甲 (填“甲”或“乙”).
【分析】根据方差的意义求解即可.
【解答】解:∵s2甲=1.2,s2乙=2.4,
∴s2甲<s2乙,
则甲的成绩比较稳定,
故答案为:甲.
【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.
11.(3分)一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了300次球,发现有120次摸到红球,则这个口袋中红球的个数约为 8 .
【分析】估计利用频率估计概率可估计摸到红球的概率为0.4,然后根据概率公式计算这个口袋中红球的数量.
【解答】解:因为共摸了300次球,发现有120次摸到红球,
所以估计摸到红球的概率为0.4,
所以估计这个口袋中红球的数量为20×0.4=8(个).
故答案为8.
【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
12.(3分)关于x的一元二次方程x2+2x﹣k=0有两个实数根,则k的取值范围是 k≥﹣1 .
【分析】利用判别式的意义得到Δ=22﹣4×(﹣k)≥0,然后解不等式即可.
【解答】解:根据题意得Δ=22﹣4×(﹣k)≥0,
解得k≥﹣1.
故答案为k≥﹣1.
【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
13.(3分)如图,在△ABC中,AC=4,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为 2+2 .
【分析】根据线段垂直平分线的性质得到DB=DC,根据三角形的外角性质得到∠ADC=90°,根据含30°角的直角三角形的性质求出AD,根据勾股定理求出DC,进而求出AB.
【解答】解:∵DE是BC的垂直平分线,
∴DB=DC,
∴∠DCB=∠B=45°,
∴∠ADC=∠DCB+∠B=90°,
∵∠A=60°,
∴∠ACD=30°,
∴AD=AC=2,
由勾股定理得:DC===2,
∴DB=DC=2,
∴AB=AD+DB=2+2,
故答案为:2+2.
【点评】本题考查的是直角三角形的性质、勾股定理、线段垂直平分线的性质,根据线段垂直平分线的性质求出DB=DC是解题的关键.
14.(3分)如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为 .
【分析】根据作图过程可得BF是∠EBC的平分线,然后证明△EBG≌△CBG,再利用勾股定理即可求出CG的长.
【解答】解:如图,连接EG,
根据作图过程可知:BF是∠EBC的平分线,
∴∠EBG=∠CBG,
在△EBG和△CBG中,
,
∴△EBG≌△CBG(SAS),
∴GE=GC,
在Rt△ABE中,AB=6,BE=BC=10,
∴AE==8,
∴DE=AD﹣AE=10﹣8=2,
在Rt△DGE中,DE=2,DG=DC﹣CG=6﹣CG,EG=CG,
∴EG2﹣DE2=DG2
∴CG2﹣22=(6﹣CG)2,
解得CG=.
故答案为:.
【点评】本题考查了矩形的性质,作图﹣基本作图,解决本题的关键是掌握矩形的性质.
15.(3分)如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为 18 .
【分析】过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,根据▱OABC的面积为15表示出BM的长度,根据CD=2BD求出ND的长,进而表示出A,D两点的坐标,根据反比例函数系数k的几何意义即可求出.
【解答】解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,
设OC=a,CN=2b,MN=b,
∵▱OABC的面积为15,
∴BM=,
∴ND=BM=,
∴A,D点坐标分别为(,3b),(,a+2b),
∴•3b=(a+2b),
∴b=a,
∴k=•3b=•3×a=18,
故答案为:18.
【点评】本题考查了平行四边形的性质和反比例函数系数k的几何意义,过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,分别求出A,D两点的坐标是解题的关键.
16.(3分)如图,∠MON=30°,点A1在射线OM上,过点A1作A1B1⊥OM交射线ON于点B1,将△A1OB1沿A1B1折叠得到△A1A2B1,点A2落在射线OM上;过点A2作A2B2⊥OM交射线ON于点B2,将△A2OB2沿A2B2折叠得到△A2A3B2,点A2落在射线OM上;…按此作法进行下去,在∠MON内部作射线OH,分别与A1B1,A2B2,A3B3,…,AnBn交于点P1,P2,P3,…Pn,又分别与A2B1,A3B2,A4B3,…,An+1Bn,交于点Q1,Q2,Q3,…,Qn.若点P1为线段A1B1的中点,OA1=,则四边形AnPnQnAn+1的面积为 (用含有n的式子表示).
【分析】先证明△OA1P1∽△OA2P2,△OP1B1∽△OP2B2,又点P1为线段A1B1的中点,从而可得P2为线段A2B2的中点,同理可证P3、P4、⋯Pn依次为线段A3B3、A4B4、⋯AnBn的中点.结合相似三角形的性质可得△P1B1Q1的P1B1上的高与△P2A2O1的A2P2上的高之比为1:2,所以△P1B1Q1的P1B1上的高为,同理可得△P2B2Q2的P2B2上的高为⋯,从而=﹣,以此类推来求,从而找到的面积规律.
【解答】解:由折叠可知,OA1=A1A2=,
又A1B1∥A2B2,
∴△OA1P1∽△OA2P2,△OP1B1∽△OP2B2,
∴===,
又点P1为线段A1B1的中点,
∴A1P1=P1B1,
∴A2P2=P2B2,
则点P2为线段A2B2的中点,
同理可证,P3、P4、⋯Pn依次为线段A3B3、A4B4、⋯AnBn的中点.
∵A1B1∥A2B2,
∴△P1B1Q1∽△P2A2O1,
∴==,
则△P1B1Q1的P1B1上的高与△P2A2O1的A2P2上的高之比为1:2,
∴△P1B1Q1的P1B1上的高为,
同理可得△P2B2Q2的P2B2上的高为⋯,
由折叠可知A2A3=,A3A4=,
∵∠MON=30°,
∴A1B1=tan30°×OA1=1,
∴A2B2=2,A3B3=4,⋯
∴=﹣
=﹣
=,
同理,=﹣
=﹣
=,
⋯,
=﹣
=
=
=
=.
故答案为:.
【点评】本题考查了规律型:图形的变化类,相似三角形的判定与性质,折叠的性质,锐角三角函数等知识,解决本题的关键在根据图形的变化找到规律.
三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)
17.(6分)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.
【分析】先把括号内的分式通分,再将除法转化为乘法,把各分子和分母因式分解,然后进行约分化简,最后代入求值.
【解答】解:原式=×
=×
=x(x+2).
把x=﹣2代入,原式=(﹣2)(﹣2+2)=3﹣2.
【点评】本题考查了分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
18.(8分)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9h.某初中为了解学生每天的睡眠时间,随机调查了部分学生,将学生睡眠时间分为A,B,C,D四组(每名学生必须选择且只能选择一种情况):
A组:睡眠时间<8h
B组:8h≤睡眠时间<9h
C组:9h≤睡眠时间<10h
D组:睡眠时间≥10h
如图1和图2是根据调查结果绘制的不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)被调查的学生有 200 人;
(2)通过计算补全条形统计图;
(3)请估计全校1200名学生中睡眠时间不足9h的人数.
【分析】(1)根据C组的人数和所占的百分比,可以计算出本次共调查了多少名学生;
(2)根据(1)中的结果可以计算出B组的人数,然后即可补全条形统计图;
(3)根据统计图图中的数据,可以计算出该校学生平均每天睡眠时间不足9h的人数.
【解答】解:(1)本次共调查了90÷45%=200(人),
故答案为:200;
(2)B组学生有:200﹣20﹣90﹣30=60(人),
补全的条形统计图如图2所示:
(3)1200×=480(人),
即估计该校学生平均每天睡眠时间不足9h的有480人.
【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
四、解答题(本大题共2道题,每题8分,共16分)
19.(8分)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
【分析】(1)直接利用概率公式求解即可;
(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.
【解答】解:(1)小明随机抽取1张卡片,抽到卡片编号为C的概率为,
故答案为:;
(2)画树状图如下:
共有9种等可能的结果数,其中两个班级恰好选择一首歌曲的有3种结果,
所以两个班级恰好抽到同一首歌曲的概率为=.
【点评】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
20.(8分)小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.
【分析】设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,利用时间=清点图书的总数÷平均每分钟清点图书的数量,结合小江清点完600本图书比小杰清点完540本图书少用了5min,即可得出关于x的分式方程,解之经检验即可得出小杰平均每分钟清点图书数量,再将其代入1.25x中可求出小江平均每分钟清点图书数量.
【解答】解:设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,
依题意得:﹣=5,
解得:x=12,
经检验,x=12是原方程的解,且符合题意,
∴1.25x=1.25×12=15.
答:小杰平均每分钟清点图书12本,小江平均每分钟清点图书15本.
【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
五、解答题(本大题共2道题,每题8分,共16分)
21.(8分)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
【分析】先求出BC=4.8m,再由锐角三角函数定义即可求解.
【解答】解:∵山坡BM的坡度i=1:3,
∴i=1:3=tanM,
∵BC∥MN,
∴∠CBD=∠M,
∴tan∠CBD==tanM=1:3,
∴BC=3CD=4.8(m),
在Rt△ABC中,tan∠ACB==tan50°≈1.19,
∴AB≈1.19BC=1.19×4.8≈5.7(m),
即树AB的高度约为5.7m.
【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数定义和坡度坡角定义,求出BC的长是解题的关键.
22.(8分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
(1)求证:CE为⊙O的切线;
(2)若DE=1,CD=3,求⊙O的半径.
【分析】(1)如图1,连接OC,先根据四边形ABCD内接于⊙O,得∠CDE=∠OBC,再根据等量代换和直角三角形的性质可得∠OCE=90°,由切线的判定可得结论;
(2)如图2,过点O作OG⊥AE于G,连接OC,OD,则∠OGE=90°,先根据三个角是直角的四边形是矩形得四边形OGEC是矩形,设⊙O的半径为x,根据勾股定理列方程可得结论.
【解答】(1)证明:如图1,连接OC,
∵OB=OC,
∴∠OCB=∠OBC,
∵四边形ABCD内接于⊙O,
∴∠CDE=∠OBC,
∵CE⊥AD,
∴∠E=∠CDE+∠ECD=90°,
∵∠ECD=∠BCF,
∴∠OCB+∠BCF=90°,
∴∠OCE=90°,即OC⊥EF,
∵OC是⊙O的半径,
∴CE为⊙O的切线;
(2)解:如图2,过点O作OG⊥AE于G,连接OC,OD,则∠OGE=90°,
∵∠E=∠OCE=90°,
∴四边形OGEC是矩形,
∴OC=EG,OG=EC,
设⊙O的半径为x,
Rt△CDE中,CD=3,DE=1,
∴EC==2,
∴OG=2,GD=x﹣1,OD=x,
由勾股定理得:OD2=OG2+DG2,
∴x2=(2)2+(x﹣1)2,
解得:x=4.5,
∴⊙O的半径是4.5.
【点评】本题考查了切线的判定,圆的有关知识,圆的内接四边形的性质,勾股定理等知识,掌握切线的判定是本题的关键.
六、解答题(本题共10分)
23.(10分)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.
(1)求y与x之间的函数关系式;
(2)设销售收入为P(万元),求P与x之间的函数关系式;
(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).
【分析】(1)利用待定系数法求函数关系式;
(2)根据销售收入=销售价×销售量列出函数关系式;
(3)设销售总利润为W,根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式,然后根据二次函数的性质分析其最值.
【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
将(20,15),(30,12.5)代入,
可得:,
解得:,
∴y与x之间的函数关系式为y=﹣x+20;
(2)设销售收入为P(万元),
∴P=(1﹣20%)xy=(﹣x+20)x=﹣x2+16x,
∴P与x之间的函数关系式为P=﹣x2+16x;
(3)设销售总利润为W(万元),
∴W=P﹣6.2x﹣m=﹣x2+16x﹣6.2x﹣(50+0.2x),
整理,可得:W=﹣x2+x﹣50,
W=﹣(x﹣24)2+65.2,
∵﹣<0,
∴当x=24时,W有最大值为65.2,
∴原料的质量为24吨时,所获销售利润最大,最大销售利润是65.2万元.
【点评】本题考查二次函数的应用,掌握待定系数法求函数解析式,理解题目中销售量,销售价,销售利润之间的数量关系及二次函数的性质是解题关键.
七、解答题(本大题共2道题,每题12分,共24分)
24.(12分)在△ABC中,AC=AB,∠BAC=α,D为线段AB上的动点,连接DC,将DC绕点D顺时针旋转α得到DE,连接CE,BE.
(1)如图1,当α=60°时,求证:△CAD≌△CBE;
(2)如图2,当tanα=时,
①探究AD和BE之间的数量关系,并说明理由;
②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.
【分析】(1)首先证明△ACB,△CDE都是等边三角形,再根据SAS证明三角形全等即可.
(2)①结论:=.利用相似三角形的性质解决问题即可.
②如图2中,过点C作CJ⊥BE交BE的延长线于J.作点C关于BE的对称点R,连接BR,ER,过点R作RT⊥BC于T.利用相似三角形的性质求出CJ=,推出点E的运动轨迹是线段BE,利用面积法求出RT,可得结论.
【解答】(1)证明:如图1中,
∵α=60°,AC=AB,
∴△ABC是等边三角形,
∴CA=CB,∠ACB=60°,
∵将DC绕点D顺时针旋转α得到DE,
∴DC=DE,∠CDE=60°,
∴△CDE是等边三角形,
∴CD=CE,∠DCE=∠ACB=60°,
∴∠ACD=∠BCE,
∴△CAD≌△CBE(SAS).
(2)解:①结论:=.
如图2中,过点C作CK⊥AB于K.
∵tan∠CAK==,
∴可以假设CK=3k,AK=4k,则AC﹣AB=5k,BK=AB﹣AK=k,
∴BC==k,
∵∠A=∠CDE,AC=AB,CD=DE,
∴∠ACB=∠ABC=∠DCE=∠DEC,
∴△ACB∽△DCE,
∴=,
∴=,
∵∠ACB=∠DCE,
∴∠ACD=∠BCE,
∴△ACD∽△BCE,
∴===.
②如图2中,过点C作CJ⊥BE交BE的延长线于J.作点C关于BE的对称点R,连接BR,ER,过点R作RT⊥BC于T.
∵AC=5,
由①可知,AH=4,CH=3,BC=,
∵△CAD∽△BCE,CK⊥AD,CJ⊥BE,
∴==(全等三角形对应边上的高的比等于相似比),
∴CJ=,
∴点E的运动轨迹是线段BE,
∵C,R关于BE对称,
∴CR=2CJ=,
∵BJ===,
∵S△CBR=•CR•BJ=•CB•RT,
∴RT==,
∵EC+EH=ER+EH≥RT,
∴EC+EH≥,
∴EC+EH的最小值为.
【点评】本题属于三角形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,轴对称最短问题等知识,解题的关键是正确寻找相似三角形解决问题,确定点E的运动轨迹是最后一个问题的突破点,属于中考压轴题.
25.(12分)如图1,在平面直角坐标系中,直线y=x+1分别与x轴、y轴交于点A,C,经过点C的抛物线y=x2+bx+c与直线y=x+1的另一个交点为点D,点D的横坐标为6.
(1)求抛物线的表达式.
(2)M为抛物线上的动点.
①N为x轴上一点,当四边形CDMN为平行四边形时,求点M的坐标;
②如图2,点M在直线CD下方,直线OM(OM∥CD的情况除外)交直线CD于点B,作直线BD关于直线OM对称的直线BD′,当直线BD′与坐标轴平行时,直接写出点M的横坐标.
【分析】(1)先由直线解析式求出A,C,D的坐标,再由C,D坐标求出抛物线解析式;
(2)①因为直线BD′与坐标轴平行,所以BD′∥x轴和BD′∥y轴分类讨论,以BD′∥x轴为例,画出草图,由于BM平分∠DBD′,又∠AOB=∠D′BM,等量代换,可以证得△AOB是等腰三角形,求出AB的长度,并且有A和D点坐标,求出∠DAO的三角函数值,过B作BH⊥x轴于H,在直角△ABH中,利用AB的长度,和∠BAH的三角函数值,求出AH和BH的长度,得到B点坐标,进一步得到直线OB的解析式,联立直线OB和抛物线解析式,求得交点M点坐标,当BD′∥y轴,用同样的方法解决.
【解答】解:(1)令x=0,则y=x+1=1,
∴C点坐标为(0,1),
令y=0,则,
∴,
∴A点坐标为(,0),
令x=6,则y=,
∴D点坐标为(),
将C,D两点坐标代入到抛物线解析式中得,
,
解得,
∴抛物线的表达式为:y=;
(2)①设N(n,0),
∵四边形CDMN为平行四边形,
∴由平移与坐标关系可得M(n+6,),
∵点M在抛物线上,
∴+1=,
∴n2+9n+4=0,
∴n=,
∴点M的坐标为(,)或(,);
②第一种情况:如图1,当BD′∥x轴时,分别过A,D作x轴的垂线,垂足分别为H,Q,
在直角△ADQ中,AQ=6+=,DQ=,
∴tan∠DAQ==,
∴cs∠DAQ=,
∵∠BAH=∠DAQ,
∴cs∠BAH=,
∵直线BD与直线BD′关于直线OM对称,
∴∠DBM=∠D′BM,
∵BD′∥x轴,
∴∠HOB=∠D′BM=∠DBM,
∴AB=AO=,
∴,
∴AH=,
∴OH=AH+AO=
令x=﹣,则y==,
∴B点坐标为(﹣,﹣),
设直线OB的解析式为y=kx,代入点B得,k=,
∴直线OB的解析式为y=x,
联立,
解得,,
∴点M的横坐标为3或,
第二种情况,如图2,当BD′∥y轴时,设BD′交x轴于H,
∴∠COB=∠OBH,
∵直线BD与直线BD′关于直线OM对称,
∴∠CBO=∠OBH=∠COB,
∴CB=CO=1,
过C作CE⊥BH于E,
∴CE∥x轴,
∴∠BCE=∠CAO,
∵tan∠CAO==,
∴cs∠CAO=,
∴cs∠BCE==,
∴CE==,
∴=,
∵CE⊥BH,BH⊥x轴,
∴∠CEH=∠BHO=∠COH=90°,
∴四边形CEHO为矩形,
∴EH=CO=1,CE=OH=,
∴BH=BE+EH=,
∴点B的坐标为(),
∴直线OB的解析式为y=2x,
联立,
化简得,x211x+4=0,
∴,
∵点M在直线CD下方,
∴x<6,
∴x=,
∴点M的横坐标为,
即点M的横坐标为3或或.
【点评】本题是一道二次函数综合题,数形结合是本题的解题的突破口,同时,对于“平行线+角平分线”这种条件,要联想到等腰三角形,是此题的解题关键,此题对学生解直角三角形的能力也有一定要求.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/9/7 13:50:41;用户:13784622801;邮箱:13784622801;学号:37960971
时间/h
6
7
8
9
人数
7
18
15
10
时间/h
6
7
8
9
人数
7
18
15
10
2023年辽宁省锦州市中考数学试卷: 这是一份2023年辽宁省锦州市中考数学试卷,共8页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
2023年辽宁省锦州市中考数学试卷 (1): 这是一份2023年辽宁省锦州市中考数学试卷 (1),共36页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
2019年辽宁省锦州市中考数学试卷: 这是一份2019年辽宁省锦州市中考数学试卷,共20页。试卷主要包含了解答题,解答题(本大题共10分)等内容,欢迎下载使用。