|试卷下载
搜索
    上传资料 赚现金
    2021年辽宁省锦州市中考数学试卷
    立即下载
    加入资料篮
    2021年辽宁省锦州市中考数学试卷01
    2021年辽宁省锦州市中考数学试卷02
    2021年辽宁省锦州市中考数学试卷03
    还剩31页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年辽宁省锦州市中考数学试卷

    展开
    这是一份2021年辽宁省锦州市中考数学试卷,共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.(2分)﹣2的相反数是( )
    A.﹣B.C.﹣2D.2
    2.(2分)据相关研究,经过40min完全黑暗后,人眼对光的敏感性达到最高点,比黑暗前增加25000倍,将数据25000用科学记数法表示为( )
    A.25×103B.2.5×104C.0.25×105D.0.25×106
    3.(2分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )
    A.B.C.D.
    4.(2分)某班50名学生一周阅读课外书籍时间如下表所示:
    那么该班50名学生一周阅读课外书籍时间的众数、中位数分别是( )
    A.18,16.5B.18,7.5C.7,8D.7,7.5
    5.(2分)如图,AM∥BN,∠ACB=90°,∠MAC=35°,则∠CBN的度数是( )
    A.35°B.45°C.55°D.65°
    6.(2分)二元一次方程组的解是( )
    A.B.C.D.
    7.(2分)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为( )
    A.2B.4C.3D.4
    8.(2分)如图,在四边形DEFG中,∠E=∠F=90°,∠DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2.将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是( )
    A.B.
    C.D.
    二、填空题(本大题共8道小题,每小题3分,共24分)
    9.(3分)若二次根式有意义,则x的取值范围是 .
    10.(3分)甲、乙两名射击运动员参加预选赛,他们每人10次射击成绩的平均数都是9环,方差分别是s2甲=1.2,s2乙=2.4.如果从这两名运动员中选取成绩稳定的一人参赛,那么应选 (填“甲”或“乙”).
    11.(3分)一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了300次球,发现有120次摸到红球,则这个口袋中红球的个数约为 .
    12.(3分)关于x的一元二次方程x2+2x﹣k=0有两个实数根,则k的取值范围是 .
    13.(3分)如图,在△ABC中,AC=4,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为 .
    14.(3分)如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为 .
    15.(3分)如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为 .
    16.(3分)如图,∠MON=30°,点A1在射线OM上,过点A1作A1B1⊥OM交射线ON于点B1,将△A1OB1沿A1B1折叠得到△A1A2B1,点A2落在射线OM上;过点A2作A2B2⊥OM交射线ON于点B2,将△A2OB2沿A2B2折叠得到△A2A3B2,点A2落在射线OM上;…按此作法进行下去,在∠MON内部作射线OH,分别与A1B1,A2B2,A3B3,…,AnBn交于点P1,P2,P3,…Pn,又分别与A2B1,A3B2,A4B3,…,An+1Bn,交于点Q1,Q2,Q3,…,Qn.若点P1为线段A1B1的中点,OA1=,则四边形AnPnQnAn+1的面积为 (用含有n的式子表示).
    三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)
    17.(6分)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.
    18.(8分)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9h.某初中为了解学生每天的睡眠时间,随机调查了部分学生,将学生睡眠时间分为A,B,C,D四组(每名学生必须选择且只能选择一种情况):
    A组:睡眠时间<8h
    B组:8h≤睡眠时间<9h
    C组:9h≤睡眠时间<10h
    D组:睡眠时间≥10h
    如图1和图2是根据调查结果绘制的不完整的统计图,请根据图中提供的信息,解答下列问题:
    (1)被调查的学生有 人;
    (2)通过计算补全条形统计图;
    (3)请估计全校1200名学生中睡眠时间不足9h的人数.
    四、解答题(本大题共2道题,每题8分,共16分)
    19.(8分)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
    (1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
    (2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
    20.(8分)小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.
    五、解答题(本大题共2道题,每题8分,共16分)
    21.(8分)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
    22.(8分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
    (1)求证:CE为⊙O的切线;
    (2)若DE=1,CD=3,求⊙O的半径.
    六、解答题(本题共10分)
    23.(10分)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.
    (1)求y与x之间的函数关系式;
    (2)设销售收入为P(万元),求P与x之间的函数关系式;
    (3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).
    七、解答题(本大题共2道题,每题12分,共24分)
    24.(12分)在△ABC中,AC=AB,∠BAC=α,D为线段AB上的动点,连接DC,将DC绕点D顺时针旋转α得到DE,连接CE,BE.
    (1)如图1,当α=60°时,求证:△CAD≌△CBE;
    (2)如图2,当tanα=时,
    ①探究AD和BE之间的数量关系,并说明理由;
    ②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.
    25.(12分)如图1,在平面直角坐标系中,直线y=x+1分别与x轴、y轴交于点A,C,经过点C的抛物线y=x2+bx+c与直线y=x+1的另一个交点为点D,点D的横坐标为6.
    (1)求抛物线的表达式.
    (2)M为抛物线上的动点.
    ①N为x轴上一点,当四边形CDMN为平行四边形时,求点M的坐标;
    ②如图2,点M在直线CD下方,直线OM(OM∥CD的情况除外)交直线CD于点B,作直线BD关于直线OM对称的直线BD′,当直线BD′与坐标轴平行时,直接写出点M的横坐标.
    2021年辽宁省锦州市中考数学试卷
    参考答案与试题解析
    一、选择题(本大题共8道小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的)
    1.(2分)﹣2的相反数是( )
    A.﹣B.C.﹣2D.2
    【分析】依据相反数的定义求解即可.
    【解答】解:﹣2的相反数是2.
    故选:D.
    【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
    2.(2分)据相关研究,经过40min完全黑暗后,人眼对光的敏感性达到最高点,比黑暗前增加25000倍,将数据25000用科学记数法表示为( )
    A.25×103B.2.5×104C.0.25×105D.0.25×106
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.
    【解答】解:将数据25000用科学记数法表示为2.5×104,
    故选:B.
    【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3.(2分)如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )
    A.B.C.D.
    【分析】根据左视图是从左边看所得到的图形,可直接得到答案.
    【解答】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形,
    故选:A.
    【点评】本题考查了三视图的知识,注意所有的看到的棱都应表现在左视图中.
    4.(2分)某班50名学生一周阅读课外书籍时间如下表所示:
    那么该班50名学生一周阅读课外书籍时间的众数、中位数分别是( )
    A.18,16.5B.18,7.5C.7,8D.7,7.5
    【分析】根据众数、中位数的定义,结合表格数据进行判断即可.
    【解答】解:由统计表给出的数据可知阅读课外书籍的时间为7小时的有18人,出现的次数最多,所以众数是7,
    因为有50个学生,所以第25、26个数的平均数是中位数,又因为25、26个数分别是7,8,所以中位数是7.5.
    故选:D.
    【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.一组数据中出现次数最多的数据叫做众数.
    5.(2分)如图,AM∥BN,∠ACB=90°,∠MAC=35°,则∠CBN的度数是( )
    A.35°B.45°C.55°D.65°
    【分析】过C点作CF∥AM,利用平行线的性质解答即可.
    【解答】解:过C点作CF∥AM,
    ∵AM∥BN,
    ∴AM∥CF∥BN,
    ∴∠MAC=∠ACF,∠CBN=∠FCB,
    ∵∠ACB=90°,∠MAC=35°,
    ∴∠CBN=∠FCB=∠ACB﹣∠ACF=∠ACB﹣∠MAC=90°﹣35°=55°,
    故选:C.
    【点评】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.
    6.(2分)二元一次方程组的解是( )
    A.B.C.D.
    【分析】方程组利用代入消元法求出解即可.
    【解答】解:,
    把②代入①得:4y+y=10,
    解得:y=2,
    把y=2代入②得:x=4,
    则方程组的解集为.
    故选:C.
    【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
    7.(2分)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为( )
    A.2B.4C.3D.4
    【分析】连接CO,过点D作DG⊥AB于点G,连接AD,因为CE=2DE,构造△DGE∽△COE,求出DG=3,设GE=x,则OE=2x,DG=3,则AG=6﹣3x,BG=6+3x,再利用△AGD∽△ADB,列出方程即可解决.
    【解答】解:连接CO,过点D作DG⊥AB于点G,连接AD,
    ∵∠BDC=45°,
    ∴∠CAO=∠CDB=45°,
    ∵AB为⊙O的直径,
    ∴∠ACB=∠ADB=90°,
    ∴∠CAB=∠CBA=45°,
    ∵BC=6,
    ∴AB=BC=12,
    ∵OA=OB,
    ∴CO⊥AB,
    ∴∠COA=∠DGE=90°,
    ∵∠DEG=∠CEO,
    ∴△DGE∽△COE,
    ∴=,
    ∵CE=2DE,
    设GE=x,则OE=2x,DG=3,
    ∴AG=6﹣3x,BG=6+3x,
    ∵∠ADB=∠AGB=90°,
    ∠DAG=∠BAD,
    ∴△AGD∽△ADB,
    ∴DG2=AG•BG,
    ∴9=(6﹣3x)(6+3x),
    ∵x>0,
    ∴x=,
    ∴OE=2,
    在Rt△OCE中,由勾股定理得:
    CE=,
    故选:D.
    【点评】本题主要考查了圆周角定理,相似三角形的判定与性质,勾股定理等知识,作辅助线构造出△DGE∽△COE是解题的关键.
    8.(2分)如图,在四边形DEFG中,∠E=∠F=90°,∠DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2.将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是( )
    A.B.
    C.D.
    【分析】根据移动过程分三个阶段讨论,第一个是点B到达点G之前,即0<x<1时,求出y和x的关系式,确定图象,第二个是点C到达点H之前,即1<x<2时,求出y和x的关系式,确定图象,第三个是点C到达点F之前,即2<x<3时,求出y和x的关系式,确定图象,即可确定选项.
    【解答】解:过点D作DH⊥EF,
    ∵∠DGF=45°,DE=1,FG=3,
    ∴EH=2,DH=EF=2,
    当0<x<1时,重叠部分为等腰直角三角形,且直角边长为x,
    ∴y=,
    ∵,
    ∴该部分图象开口向上,
    当1<x<2时,如图,
    设A'B'与DG交与点N,A'C'与DG交与点M,
    则S重叠=S△GMC'﹣S△GNB',
    设B'K=a,则NK=2a,
    ∵GC'=x,B'C'=1,
    ∴GB'=x﹣1,
    ∵△GKN是等腰直角三角形,
    ∴GK=NK,
    ∴x﹣1+a=2a,
    ∴a=x﹣1,
    ∴NK=2x﹣2,
    ∴,
    ∵,
    ∴S重叠=﹣(x2﹣2x+1)=,
    ∵,
    ∴该部分图象开口向下,
    当2<x<3时,重叠部分的面积为S△ABC,是固定值,
    ∴该部分图象是平行x轴的线段,
    故选:B.
    【点评】本题主要考查动点问题的函数图象,关键是要把移动过程分成几个阶段,然后根据每个阶段的情况单独讨论,确定y和x之间的函数关系式,从而确定图象.
    二、填空题(本大题共8道小题,每小题3分,共24分)
    9.(3分)若二次根式有意义,则x的取值范围是 x≥ .
    【分析】根据被开方数是非负数列不等式求解即可.
    【解答】解:根据题意得,2x﹣3≥0,
    解得x≥.
    故答案为:x≥.
    【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数列不等式是解题的关键.
    10.(3分)甲、乙两名射击运动员参加预选赛,他们每人10次射击成绩的平均数都是9环,方差分别是s2甲=1.2,s2乙=2.4.如果从这两名运动员中选取成绩稳定的一人参赛,那么应选 甲 (填“甲”或“乙”).
    【分析】根据方差的意义求解即可.
    【解答】解:∵s2甲=1.2,s2乙=2.4,
    ∴s2甲<s2乙,
    则甲的成绩比较稳定,
    故答案为:甲.
    【点评】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.
    11.(3分)一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了300次球,发现有120次摸到红球,则这个口袋中红球的个数约为 8 .
    【分析】估计利用频率估计概率可估计摸到红球的概率为0.4,然后根据概率公式计算这个口袋中红球的数量.
    【解答】解:因为共摸了300次球,发现有120次摸到红球,
    所以估计摸到红球的概率为0.4,
    所以估计这个口袋中红球的数量为20×0.4=8(个).
    故答案为8.
    【点评】本题考查了利用频率估计概率:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随试验次数的增多,值越来越精确.
    12.(3分)关于x的一元二次方程x2+2x﹣k=0有两个实数根,则k的取值范围是 k≥﹣1 .
    【分析】利用判别式的意义得到Δ=22﹣4×(﹣k)≥0,然后解不等式即可.
    【解答】解:根据题意得Δ=22﹣4×(﹣k)≥0,
    解得k≥﹣1.
    故答案为k≥﹣1.
    【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
    13.(3分)如图,在△ABC中,AC=4,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为 2+2 .
    【分析】根据线段垂直平分线的性质得到DB=DC,根据三角形的外角性质得到∠ADC=90°,根据含30°角的直角三角形的性质求出AD,根据勾股定理求出DC,进而求出AB.
    【解答】解:∵DE是BC的垂直平分线,
    ∴DB=DC,
    ∴∠DCB=∠B=45°,
    ∴∠ADC=∠DCB+∠B=90°,
    ∵∠A=60°,
    ∴∠ACD=30°,
    ∴AD=AC=2,
    由勾股定理得:DC===2,
    ∴DB=DC=2,
    ∴AB=AD+DB=2+2,
    故答案为:2+2.
    【点评】本题考查的是直角三角形的性质、勾股定理、线段垂直平分线的性质,根据线段垂直平分线的性质求出DB=DC是解题的关键.
    14.(3分)如图,在矩形ABCD中,AB=6,BC=10,以点B为圆心、BC的长为半径画弧交AD于点E,再分别以点C,E为圆心、大于CE的长为半径画弧,两弧交于点F,作射线BF交CD于点G,则CG的长为 .
    【分析】根据作图过程可得BF是∠EBC的平分线,然后证明△EBG≌△CBG,再利用勾股定理即可求出CG的长.
    【解答】解:如图,连接EG,
    根据作图过程可知:BF是∠EBC的平分线,
    ∴∠EBG=∠CBG,
    在△EBG和△CBG中,

    ∴△EBG≌△CBG(SAS),
    ∴GE=GC,
    在Rt△ABE中,AB=6,BE=BC=10,
    ∴AE==8,
    ∴DE=AD﹣AE=10﹣8=2,
    在Rt△DGE中,DE=2,DG=DC﹣CG=6﹣CG,EG=CG,
    ∴EG2﹣DE2=DG2
    ∴CG2﹣22=(6﹣CG)2,
    解得CG=.
    故答案为:.
    【点评】本题考查了矩形的性质,作图﹣基本作图,解决本题的关键是掌握矩形的性质.
    15.(3分)如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为 18 .
    【分析】过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,根据▱OABC的面积为15表示出BM的长度,根据CD=2BD求出ND的长,进而表示出A,D两点的坐标,根据反比例函数系数k的几何意义即可求出.
    【解答】解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,
    设OC=a,CN=2b,MN=b,
    ∵▱OABC的面积为15,
    ∴BM=,
    ∴ND=BM=,
    ∴A,D点坐标分别为(,3b),(,a+2b),
    ∴•3b=(a+2b),
    ∴b=a,
    ∴k=•3b=•3×a=18,
    故答案为:18.
    【点评】本题考查了平行四边形的性质和反比例函数系数k的几何意义,过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,分别求出A,D两点的坐标是解题的关键.
    16.(3分)如图,∠MON=30°,点A1在射线OM上,过点A1作A1B1⊥OM交射线ON于点B1,将△A1OB1沿A1B1折叠得到△A1A2B1,点A2落在射线OM上;过点A2作A2B2⊥OM交射线ON于点B2,将△A2OB2沿A2B2折叠得到△A2A3B2,点A2落在射线OM上;…按此作法进行下去,在∠MON内部作射线OH,分别与A1B1,A2B2,A3B3,…,AnBn交于点P1,P2,P3,…Pn,又分别与A2B1,A3B2,A4B3,…,An+1Bn,交于点Q1,Q2,Q3,…,Qn.若点P1为线段A1B1的中点,OA1=,则四边形AnPnQnAn+1的面积为 (用含有n的式子表示).
    【分析】先证明△OA1P1∽△OA2P2,△OP1B1∽△OP2B2,又点P1为线段A1B1的中点,从而可得P2为线段A2B2的中点,同理可证P3、P4、⋯Pn依次为线段A3B3、A4B4、⋯AnBn的中点.结合相似三角形的性质可得△P1B1Q1的P1B1上的高与△P2A2O1的A2P2上的高之比为1:2,所以△P1B1Q1的P1B1上的高为,同理可得△P2B2Q2的P2B2上的高为⋯,从而=﹣,以此类推来求,从而找到的面积规律.
    【解答】解:由折叠可知,OA1=A1A2=,
    又A1B1∥A2B2,
    ∴△OA1P1∽△OA2P2,△OP1B1∽△OP2B2,
    ∴===,
    又点P1为线段A1B1的中点,
    ∴A1P1=P1B1,
    ∴A2P2=P2B2,
    则点P2为线段A2B2的中点,
    同理可证,P3、P4、⋯Pn依次为线段A3B3、A4B4、⋯AnBn的中点.
    ∵A1B1∥A2B2,
    ∴△P1B1Q1∽△P2A2O1,
    ∴==,
    则△P1B1Q1的P1B1上的高与△P2A2O1的A2P2上的高之比为1:2,
    ∴△P1B1Q1的P1B1上的高为,
    同理可得△P2B2Q2的P2B2上的高为⋯,
    由折叠可知A2A3=,A3A4=,
    ∵∠MON=30°,
    ∴A1B1=tan30°×OA1=1,
    ∴A2B2=2,A3B3=4,⋯
    ∴=﹣
    =﹣
    =,
    同理,=﹣
    =﹣
    =,
    ⋯,
    =﹣



    =.
    故答案为:.
    【点评】本题考查了规律型:图形的变化类,相似三角形的判定与性质,折叠的性质,锐角三角函数等知识,解决本题的关键在根据图形的变化找到规律.
    三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)
    17.(6分)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.
    【分析】先把括号内的分式通分,再将除法转化为乘法,把各分子和分母因式分解,然后进行约分化简,最后代入求值.
    【解答】解:原式=×
    =×
    =x(x+2).
    把x=﹣2代入,原式=(﹣2)(﹣2+2)=3﹣2.
    【点评】本题考查了分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
    18.(8分)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9h.某初中为了解学生每天的睡眠时间,随机调查了部分学生,将学生睡眠时间分为A,B,C,D四组(每名学生必须选择且只能选择一种情况):
    A组:睡眠时间<8h
    B组:8h≤睡眠时间<9h
    C组:9h≤睡眠时间<10h
    D组:睡眠时间≥10h
    如图1和图2是根据调查结果绘制的不完整的统计图,请根据图中提供的信息,解答下列问题:
    (1)被调查的学生有 200 人;
    (2)通过计算补全条形统计图;
    (3)请估计全校1200名学生中睡眠时间不足9h的人数.
    【分析】(1)根据C组的人数和所占的百分比,可以计算出本次共调查了多少名学生;
    (2)根据(1)中的结果可以计算出B组的人数,然后即可补全条形统计图;
    (3)根据统计图图中的数据,可以计算出该校学生平均每天睡眠时间不足9h的人数.
    【解答】解:(1)本次共调查了90÷45%=200(人),
    故答案为:200;
    (2)B组学生有:200﹣20﹣90﹣30=60(人),
    补全的条形统计图如图2所示:
    (3)1200×=480(人),
    即估计该校学生平均每天睡眠时间不足9h的有480人.
    【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    四、解答题(本大题共2道题,每题8分,共16分)
    19.(8分)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
    (1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
    (2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
    【分析】(1)直接利用概率公式求解即可;
    (2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.
    【解答】解:(1)小明随机抽取1张卡片,抽到卡片编号为C的概率为,
    故答案为:;
    (2)画树状图如下:
    共有9种等可能的结果数,其中两个班级恰好选择一首歌曲的有3种结果,
    所以两个班级恰好抽到同一首歌曲的概率为=.
    【点评】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    20.(8分)小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.
    【分析】设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,利用时间=清点图书的总数÷平均每分钟清点图书的数量,结合小江清点完600本图书比小杰清点完540本图书少用了5min,即可得出关于x的分式方程,解之经检验即可得出小杰平均每分钟清点图书数量,再将其代入1.25x中可求出小江平均每分钟清点图书数量.
    【解答】解:设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,
    依题意得:﹣=5,
    解得:x=12,
    经检验,x=12是原方程的解,且符合题意,
    ∴1.25x=1.25×12=15.
    答:小杰平均每分钟清点图书12本,小江平均每分钟清点图书15本.
    【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    五、解答题(本大题共2道题,每题8分,共16分)
    21.(8分)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
    【分析】先求出BC=4.8m,再由锐角三角函数定义即可求解.
    【解答】解:∵山坡BM的坡度i=1:3,
    ∴i=1:3=tanM,
    ∵BC∥MN,
    ∴∠CBD=∠M,
    ∴tan∠CBD==tanM=1:3,
    ∴BC=3CD=4.8(m),
    在Rt△ABC中,tan∠ACB==tan50°≈1.19,
    ∴AB≈1.19BC=1.19×4.8≈5.7(m),
    即树AB的高度约为5.7m.
    【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数定义和坡度坡角定义,求出BC的长是解题的关键.
    22.(8分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
    (1)求证:CE为⊙O的切线;
    (2)若DE=1,CD=3,求⊙O的半径.
    【分析】(1)如图1,连接OC,先根据四边形ABCD内接于⊙O,得∠CDE=∠OBC,再根据等量代换和直角三角形的性质可得∠OCE=90°,由切线的判定可得结论;
    (2)如图2,过点O作OG⊥AE于G,连接OC,OD,则∠OGE=90°,先根据三个角是直角的四边形是矩形得四边形OGEC是矩形,设⊙O的半径为x,根据勾股定理列方程可得结论.
    【解答】(1)证明:如图1,连接OC,
    ∵OB=OC,
    ∴∠OCB=∠OBC,
    ∵四边形ABCD内接于⊙O,
    ∴∠CDE=∠OBC,
    ∵CE⊥AD,
    ∴∠E=∠CDE+∠ECD=90°,
    ∵∠ECD=∠BCF,
    ∴∠OCB+∠BCF=90°,
    ∴∠OCE=90°,即OC⊥EF,
    ∵OC是⊙O的半径,
    ∴CE为⊙O的切线;
    (2)解:如图2,过点O作OG⊥AE于G,连接OC,OD,则∠OGE=90°,
    ∵∠E=∠OCE=90°,
    ∴四边形OGEC是矩形,
    ∴OC=EG,OG=EC,
    设⊙O的半径为x,
    Rt△CDE中,CD=3,DE=1,
    ∴EC==2,
    ∴OG=2,GD=x﹣1,OD=x,
    由勾股定理得:OD2=OG2+DG2,
    ∴x2=(2)2+(x﹣1)2,
    解得:x=4.5,
    ∴⊙O的半径是4.5.
    【点评】本题考查了切线的判定,圆的有关知识,圆的内接四边形的性质,勾股定理等知识,掌握切线的判定是本题的关键.
    六、解答题(本题共10分)
    23.(10分)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.
    (1)求y与x之间的函数关系式;
    (2)设销售收入为P(万元),求P与x之间的函数关系式;
    (3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).
    【分析】(1)利用待定系数法求函数关系式;
    (2)根据销售收入=销售价×销售量列出函数关系式;
    (3)设销售总利润为W,根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式,然后根据二次函数的性质分析其最值.
    【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
    将(20,15),(30,12.5)代入,
    可得:,
    解得:,
    ∴y与x之间的函数关系式为y=﹣x+20;
    (2)设销售收入为P(万元),
    ∴P=(1﹣20%)xy=(﹣x+20)x=﹣x2+16x,
    ∴P与x之间的函数关系式为P=﹣x2+16x;
    (3)设销售总利润为W(万元),
    ∴W=P﹣6.2x﹣m=﹣x2+16x﹣6.2x﹣(50+0.2x),
    整理,可得:W=﹣x2+x﹣50,
    W=﹣(x﹣24)2+65.2,
    ∵﹣<0,
    ∴当x=24时,W有最大值为65.2,
    ∴原料的质量为24吨时,所获销售利润最大,最大销售利润是65.2万元.
    【点评】本题考查二次函数的应用,掌握待定系数法求函数解析式,理解题目中销售量,销售价,销售利润之间的数量关系及二次函数的性质是解题关键.
    七、解答题(本大题共2道题,每题12分,共24分)
    24.(12分)在△ABC中,AC=AB,∠BAC=α,D为线段AB上的动点,连接DC,将DC绕点D顺时针旋转α得到DE,连接CE,BE.
    (1)如图1,当α=60°时,求证:△CAD≌△CBE;
    (2)如图2,当tanα=时,
    ①探究AD和BE之间的数量关系,并说明理由;
    ②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.
    【分析】(1)首先证明△ACB,△CDE都是等边三角形,再根据SAS证明三角形全等即可.
    (2)①结论:=.利用相似三角形的性质解决问题即可.
    ②如图2中,过点C作CJ⊥BE交BE的延长线于J.作点C关于BE的对称点R,连接BR,ER,过点R作RT⊥BC于T.利用相似三角形的性质求出CJ=,推出点E的运动轨迹是线段BE,利用面积法求出RT,可得结论.
    【解答】(1)证明:如图1中,
    ∵α=60°,AC=AB,
    ∴△ABC是等边三角形,
    ∴CA=CB,∠ACB=60°,
    ∵将DC绕点D顺时针旋转α得到DE,
    ∴DC=DE,∠CDE=60°,
    ∴△CDE是等边三角形,
    ∴CD=CE,∠DCE=∠ACB=60°,
    ∴∠ACD=∠BCE,
    ∴△CAD≌△CBE(SAS).
    (2)解:①结论:=.
    如图2中,过点C作CK⊥AB于K.
    ∵tan∠CAK==,
    ∴可以假设CK=3k,AK=4k,则AC﹣AB=5k,BK=AB﹣AK=k,
    ∴BC==k,
    ∵∠A=∠CDE,AC=AB,CD=DE,
    ∴∠ACB=∠ABC=∠DCE=∠DEC,
    ∴△ACB∽△DCE,
    ∴=,
    ∴=,
    ∵∠ACB=∠DCE,
    ∴∠ACD=∠BCE,
    ∴△ACD∽△BCE,
    ∴===.
    ②如图2中,过点C作CJ⊥BE交BE的延长线于J.作点C关于BE的对称点R,连接BR,ER,过点R作RT⊥BC于T.
    ∵AC=5,
    由①可知,AH=4,CH=3,BC=,
    ∵△CAD∽△BCE,CK⊥AD,CJ⊥BE,
    ∴==(全等三角形对应边上的高的比等于相似比),
    ∴CJ=,
    ∴点E的运动轨迹是线段BE,
    ∵C,R关于BE对称,
    ∴CR=2CJ=,
    ∵BJ===,
    ∵S△CBR=•CR•BJ=•CB•RT,
    ∴RT==,
    ∵EC+EH=ER+EH≥RT,
    ∴EC+EH≥,
    ∴EC+EH的最小值为.
    【点评】本题属于三角形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,轴对称最短问题等知识,解题的关键是正确寻找相似三角形解决问题,确定点E的运动轨迹是最后一个问题的突破点,属于中考压轴题.
    25.(12分)如图1,在平面直角坐标系中,直线y=x+1分别与x轴、y轴交于点A,C,经过点C的抛物线y=x2+bx+c与直线y=x+1的另一个交点为点D,点D的横坐标为6.
    (1)求抛物线的表达式.
    (2)M为抛物线上的动点.
    ①N为x轴上一点,当四边形CDMN为平行四边形时,求点M的坐标;
    ②如图2,点M在直线CD下方,直线OM(OM∥CD的情况除外)交直线CD于点B,作直线BD关于直线OM对称的直线BD′,当直线BD′与坐标轴平行时,直接写出点M的横坐标.
    【分析】(1)先由直线解析式求出A,C,D的坐标,再由C,D坐标求出抛物线解析式;
    (2)①因为直线BD′与坐标轴平行,所以BD′∥x轴和BD′∥y轴分类讨论,以BD′∥x轴为例,画出草图,由于BM平分∠DBD′,又∠AOB=∠D′BM,等量代换,可以证得△AOB是等腰三角形,求出AB的长度,并且有A和D点坐标,求出∠DAO的三角函数值,过B作BH⊥x轴于H,在直角△ABH中,利用AB的长度,和∠BAH的三角函数值,求出AH和BH的长度,得到B点坐标,进一步得到直线OB的解析式,联立直线OB和抛物线解析式,求得交点M点坐标,当BD′∥y轴,用同样的方法解决.
    【解答】解:(1)令x=0,则y=x+1=1,
    ∴C点坐标为(0,1),
    令y=0,则,
    ∴,
    ∴A点坐标为(,0),
    令x=6,则y=,
    ∴D点坐标为(),
    将C,D两点坐标代入到抛物线解析式中得,

    解得,
    ∴抛物线的表达式为:y=;
    (2)①设N(n,0),
    ∵四边形CDMN为平行四边形,
    ∴由平移与坐标关系可得M(n+6,),
    ∵点M在抛物线上,
    ∴+1=,
    ∴n2+9n+4=0,
    ∴n=,
    ∴点M的坐标为(,)或(,);
    ②第一种情况:如图1,当BD′∥x轴时,分别过A,D作x轴的垂线,垂足分别为H,Q,
    在直角△ADQ中,AQ=6+=,DQ=,
    ∴tan∠DAQ==,
    ∴cs∠DAQ=,
    ∵∠BAH=∠DAQ,
    ∴cs∠BAH=,
    ∵直线BD与直线BD′关于直线OM对称,
    ∴∠DBM=∠D′BM,
    ∵BD′∥x轴,
    ∴∠HOB=∠D′BM=∠DBM,
    ∴AB=AO=,
    ∴,
    ∴AH=,
    ∴OH=AH+AO=
    令x=﹣,则y==,
    ∴B点坐标为(﹣,﹣),
    设直线OB的解析式为y=kx,代入点B得,k=,
    ∴直线OB的解析式为y=x,
    联立,
    解得,,
    ∴点M的横坐标为3或,
    第二种情况,如图2,当BD′∥y轴时,设BD′交x轴于H,
    ∴∠COB=∠OBH,
    ∵直线BD与直线BD′关于直线OM对称,
    ∴∠CBO=∠OBH=∠COB,
    ∴CB=CO=1,
    过C作CE⊥BH于E,
    ∴CE∥x轴,
    ∴∠BCE=∠CAO,
    ∵tan∠CAO==,
    ∴cs∠CAO=,
    ∴cs∠BCE==,
    ∴CE==,
    ∴=,
    ∵CE⊥BH,BH⊥x轴,
    ∴∠CEH=∠BHO=∠COH=90°,
    ∴四边形CEHO为矩形,
    ∴EH=CO=1,CE=OH=,
    ∴BH=BE+EH=,
    ∴点B的坐标为(),
    ∴直线OB的解析式为y=2x,
    联立,
    化简得,x211x+4=0,
    ∴,
    ∵点M在直线CD下方,
    ∴x<6,
    ∴x=,
    ∴点M的横坐标为,
    即点M的横坐标为3或或.
    【点评】本题是一道二次函数综合题,数形结合是本题的解题的突破口,同时,对于“平行线+角平分线”这种条件,要联想到等腰三角形,是此题的解题关键,此题对学生解直角三角形的能力也有一定要求.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
    日期:2021/9/7 13:50:41;用户:13784622801;邮箱:13784622801;学号:37960971
    时间/h
    6
    7
    8
    9
    人数
    7
    18
    15
    10
    时间/h
    6
    7
    8
    9
    人数
    7
    18
    15
    10
    相关试卷

    2023年辽宁省锦州市中考数学试卷: 这是一份2023年辽宁省锦州市中考数学试卷,共8页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2023年辽宁省锦州市中考数学试卷 (1): 这是一份2023年辽宁省锦州市中考数学试卷 (1),共36页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2019年辽宁省锦州市中考数学试卷: 这是一份2019年辽宁省锦州市中考数学试卷,共20页。试卷主要包含了解答题,解答题(本大题共10分)等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年辽宁省锦州市中考数学试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map