2021-2022学年江西省赣州市宁都县九年级(上)期中数学试卷(解析)
展开2017-2018学年江西省赣州市宁都县九年级(上)期中数学试卷
一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)
1.(3分)下列安全标志图中,是中心对称图形的是( )
A. B. C. D.
2.(3分)下列一元二次方程没有实数根的是( )
A.x2﹣1=0 B.x2=0 C.x2+x﹣1=0 D.x2+1=0
3.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是( )
A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25
4.(3分)把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是( )
A.y=3(x﹣2)2+1 B.y=3(x﹣2)2﹣1 C.y=3(x+2)2+1 D.y=3(x+2)2﹣1
5.(3分)如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为( )
A.∠BOF B.∠AOD C.∠COE D.∠COF
6.(3分)如图,已知二次函数y1=ax2+bx+c的图象分别与x轴的正半轴、y轴的负半轴于A、B两点,且OA=OB,则一次函数y2=(ac﹣b)x+abc的图象可能是( )
A. B. C. D.
二、填空题(本大题共6小题,每小题3分,共18分.)
7.(3分)抛物线y=x2+2x﹣3的顶点坐标为 .
8.(3分)在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是 .
9.(3分)抛物线y=x2﹣2x﹣3与x轴的交点坐标为 .
10.(3分)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m= .
11.(3分)已知二次函数y=2x2﹣4x+m的图象上有三个点,坐标分别为A(2,y1),B(3,y2),C(﹣4,y3),则y1,y2,y3的大小关系是 .
12.(3分)如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为 .
三、(本大题共5小题,每小题6分,共30分).
13.(6分)解方程:
(1)x2﹣4x﹣1=0
(2)3x(x﹣2)=2(2﹣x)
14.(6分)将抛物线y=﹣x2﹣2x﹣3向右平移三个单位,再绕原点O旋转180°,求所得抛物线的解析式?
15.(6分)已知关于x的一元二次方程x2+(2k+1)+k2=0①有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.
16.(6分)在10×10的正方形网格中(每个小正方形的边长为1)线段AB在网格中的位置如图所示,请仅用无刻度直尺,按要求分别完成以下画图.
(1)在图1中,画出一个以AB为边,另两个顶点C、D也在格点上的菱形ABCD;
(2)在图2中,画出一个以A、B为顶点,另两个顶点C、D也在格点上的菱形,且使这个菱形的面积最大或最小(仅选其一,即可):其面积值是 .
17.(6分)某水渠的横截面呈抛物线,水面的宽度为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2﹣4.
(1)求a的值;
(2)点C(﹣1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.
四、(本大题共3小题,每小题8分,共24分).
18.(8分)根据要求,解答下列问题:
①方程x2﹣2x+1=0的解为 ;
②方程x2﹣3x+2=0的解为 ;
③方程x2﹣4x+3=0的解为 ;
…[来源:Z&xx&k.Com]
(2)根据以上方程特征及其解的特征,请猜想:
①方程x2﹣9x+8=0的解为 ;
②关于x的方程 的解为x1=1,x2=n.
(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.
19.(8分)收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的妹妹在六一儿童节期间的对话:
甜甜:2017年六一,我们共收到484元微信红包.
妹妹:2015年六一,我们共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元.
请问:
(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?
(2)2017年六一甜甜和她妹妹各收到多少钱的微信红包?
20.(8分)已知函数C1:y=kx2+(﹣3k)x﹣4
(1)求证:无论k为何值,函数图象与x轴总有交点;
(2)当k≠0时,A(n﹣3,n﹣7)、B(﹣n+1,n﹣7)是抛物线上的两个不同点:
①求抛物线的表达式;
②求n的值.
五、(本大题共2小题,每小题9分,共18分.)
21.(9分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.
22.(9分)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为 ;
②线段AD,BE之间的数量关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
六、(本大题1小题,满分12分.)
23.(12分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作BC的垂线,垂足为F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.
(1)求出抛物线的解析式;
(2)小明探究点P的位置时发现;当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值.请你判定该猜想是否正确,并说明理由;
(3)请求出△PDE的周长最小时点P的坐标;
(4)若将“使△PDE的面积为整数”的点记作“好点”,则存在有多少个“好点”?请直接写出“好点”的个数.
2017-2018学年江西省赣州市宁都县九年级(上)期中数学试卷
参考答案与试题解析
一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)
1.(3分)下列安全标志图中,是中心对称图形的是( )
A. B. C. D.
【解答】解:A、不是中心对称图形,故此选项不合题意;
B、是中心对称图形,故此选项符合题意;
C、不是中心对称图形,故此选项不符合题意;
D、不是中心对称图形,故此选项不合题意;
故选:B.
2.(3分)下列一元二次方程没有实数根的是( )
A.x2﹣1=0 B.x2=0 C.x2+x﹣1=0 D.x2+1=0
【解答】解:A、△=02﹣4×1×(﹣1)=4>0,
∴该方程有两个不相等的实数根,选项A不符合题意;
B、∵△=02﹣4×1×0=0,
∴该方程有两个相等的实数根,选项B不符合题意;
C、∵△=12﹣4×1×(﹣1)=5>0,
∴该方程有两个不相等的实数根,选项C不符合题意;
D、∵△=02﹣4×1×1=﹣4<0,
∴该方程没有实数根,选项D符合题意.
故选:D.
3.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是( )
A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25
【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,
配方得:x2+8x+16=7,即(x+4)2=7,
故选:C.
4.(3分)把抛物线y=3x2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是( )
A.y=3(x﹣2)2+1 B.y=3(x﹣2)2﹣1 C.y=3(x+2)2+1 D.y=3(x+2)2﹣1
【解答】解:抛物线y=3x2向左平移2个单位,再向上平移1个单位y=3(x+2)2+1.
故选:C.
5.(3分)如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为( )
A.∠BOF B.∠AOD C.∠COE D.∠COF
【解答】解:OB旋转后的对应边为OF,故∠BOF可以作为旋转角,故本选项错误;
B、OA旋转后的对应边为OD,故∠AOD可以作为旋转角,故本选项错误;
C、OC旋转后的对应边为OE,故∠COE可以作为旋转角,故本选项错误;
D、OC旋转后的对应边为OE不是OF,故∠COF不可以作为旋转角,故本选项正确;
故选:D.
6.(3分)如图,已知二次函数y1=ax2+bx+c的图象分别与x轴的正半轴、y轴的负半轴于A、B两点,且OA=OB,则一次函数y2=(ac﹣b)x+abc的图象可能是( )
A. B. C. D.
【解答】解:∵抛物线的开口向下、对称轴在y轴的右侧且与y轴交点在原点下方,
∴a<0、b>0、c<0,
则abc>0,
∵点B(0,c)、且OA=OB,
∴点A(﹣c,0),
将点A(﹣c,0)代入解析式,得:ac2﹣bc+c=0,
∴ac﹣b=﹣1<0,
则一次函数y2=(ac﹣b)x+abc的图象经过第一、二、四象限,
故选:D.
二、填空题(本大题共6小题,每小题3分,共18分.)
7.(3分)抛物线y=x2+2x﹣3的顶点坐标为 (﹣1,﹣4) .
【解答】解:∵抛物线y=x2+2x﹣3可化为:y=(x+1)2﹣4,
∴其顶点坐标为(﹣1,﹣4).
故答案为:(﹣1,﹣4).[来源:学#科#网Z#X#X#K]
8.(3分)在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是 (2,﹣3) .
【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).
故答案是:(2,﹣3).
9.(3分)抛物线y=x2﹣2x﹣3与x轴的交点坐标为 (3,0),(﹣1,0) .
【解答】解:令y=0,则x2﹣2x﹣3=0,
解得x=3或x=﹣1.
则抛物线y=x2﹣2x﹣3与x轴的交点坐标是(3,0),(﹣1,0).
故答案为(3,0),(﹣1,0).
10.(3分)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m= ﹣1 .
【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,
∴x=0满足关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0,且m﹣1≠0,
∴m2﹣1=0,即(m﹣1)(m+1)=0且m﹣1≠0,
∴m+1=0,
解得,m=﹣1;
故答案是:﹣1.
11.(3分)已知二次函数y=2x2﹣4x+m的图象上有三个点,坐标分别为A(2,y1),B(3,y2),C(﹣4,y3),则y1,y2,y3的大小关系是 y1<y2<y3 .
【解答】解:由二次函数y=2x2﹣4x+m可知抛物线开口向上,对称轴为x=﹣=1,
∵A、B、C三点中,A点离对称轴最近,C点离对称轴最远,
∴y1<y2<y3.
故本题答案为:y1<y2<y3.
12.(3分)如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为 40°或70°或100° .
【解答】解:连结AP,如图,
∵点O是AB的中点,
∴OA=OB,
∵OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,
∴OP=OB,
∴点P在以AB为直径的圆上,
∴∠BAP=∠BOP=α,∠APC=∠ABC=70°,
∵∠ACB=90°,
∴点P、C在以AB为直径的圆上,
∴∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,
当AP=AC时,∠APC=∠ACP,
即90°﹣α=70°,解得α=40°;
当PA=PC时,∠PAC=∠ACP,
即α+20°=90°﹣α,解得α=70°;
当CP=CA时,∠CAP=∠CAP,
即α+20°=70°,解得α=100°,[来源:学#科#网]
综上所述,α的值为40°或70°或100°.
故答案为40°或70°或100°.
三、(本大题共5小题,每小题6分,共30分).
13.(6分)解方程:
(1)x2﹣4x﹣1=0
(2)3x(x﹣2)=2(2﹣x)
【解答】解:(1)△=(﹣4)2﹣4×1×(﹣1)=8,
x==2±,
所以x1=2+,x2=2﹣;
(2)3x(x﹣2)+2(x﹣2)=0,
(x﹣2)(3x+2)=0,
x﹣2=0或3x+2=0,
所以x1=2,x2=﹣.
14.(6分)将抛物线y=﹣x2﹣2x﹣3向右平移三个单位,再绕原点O旋转180°,求所得抛物线的解析式?
【解答】解:y=﹣x2﹣2x﹣3,
=﹣(x2+2x+1)+1﹣3,
=﹣(x+1)2﹣2,
所以,抛物线的顶点坐标为(﹣1,﹣2),
∵向右平移三个单位,
∴平移后的抛物线的顶点坐标为(2,﹣2),
∵再绕原点O旋转180°,
∴旋转后的抛物线的顶点坐标为(﹣2,2),
∴所得抛物线解析式为y=(x+2)2+2.
15.(6分)已知关于x的一元二次方程x2+(2k+1)+k2=0①有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.
【解答】解:(1)∵方程有两个不相等的实数根,
∴△=(2k+1)2﹣4k2=4k+1>0,
解得:k>﹣;
(2)当k=1时,方程为x2+3x+1=0,
∵x1+x2=﹣3,x1x2=1,
∴x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7
16.(6分)在10×10的正方形网格中(每个小正方形的边长为1)线段AB在网格中的位置如图所示,请仅用无刻度直尺,按要求分别完成以下画图.
(1)在图1中,画出一个以AB为边,另两个顶点C、D也在格点上的菱形ABCD;
(2)在图2中,画出一个以A、B为顶点,另两个顶点C、D也在格点上的菱形,且使这个菱形的面积最大或最小(仅选其一,即可):其面积值是 15 .
【解答】解:(1)如图1所示:四边形ABCD即为所求;
(2)如图2所示:以线段AB为对角线得到菱形ADBC此时面积最大,
其面积为:××3=15.
故答案为:15.
17.(6分)某水渠的横截面呈抛物线,水面的宽度为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2﹣4.
(1)求a的值;
(2)点C(﹣1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.
【解答】解:(1)∵AB=8,由抛物线的性质可知OB=4,
∴B(4,0),
把B点坐标代入解析式得:16a﹣4=0,[来源:学#科#网Z#X#X#K][来源:学。科。网Z。X。X。K]
解得:a=;
(2)过点C作CE⊥AB于E,过点D作DF⊥AB于F,
∵a=,
∴y=x2﹣4,
令x=﹣1,
∴m=×(﹣1)2﹣4=﹣,
∴C(﹣1,﹣),
∵C关于原点对称点为D,
∴D的坐标为(1,),
则CE=DF=,
S△BCD=S△BOD+S△BOC=OB•DF+OB•CE=×4×+×4×=15,
∴△BCD的面积为15平方米.
四、(本大题共3小题,每小题8分,共24分).
18.(8分)根据要求,解答下列问题:
①方程x2﹣2x+1=0的解为 x1=x2=1 ;
②方程x2﹣3x+2=0的解为 x1=1,x2=2 ;
③方程x2﹣4x+3=0的解为 x1=1,x2=3 ;
…
(2)根据以上方程特征及其解的特征,请猜想:
①方程x2﹣9x+8=0的解为 1、8 ;
②关于x的方程 x2﹣(1+n)x+n=0 的解为x1=1,x2=n.
(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.
【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;
②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;
③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;
…
(2)根据以上方程特征及其解的特征,请猜想:
①方程x2﹣9x+8=0的解为x1=1,x2=8;
②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.
(3)x2﹣9x=﹣8,
x2﹣9x+=﹣8+,
(x﹣)2=
x﹣=±,
所以x1=1,x2=8;
所以猜想正确.
故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;
19.(8分)收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的妹妹在六一儿童节期间的对话:
甜甜:2017年六一,我们共收到484元微信红包.
妹妹:2015年六一,我们共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元.
请问:
(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?
(2)2017年六一甜甜和她妹妹各收到多少钱的微信红包?
【解答】解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x,
依题意得:400(1+x)2=484,
解得x1=0.1=10%,x2=﹣2.1(舍去).
答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%;
(2)设甜甜在2017年六一收到微信红包为y元,
依题意得:2y+34+y=484,
解得y=150
所以484﹣150=334(元).
答:甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.
20.(8分)已知函数C1:y=kx2+(﹣3k)x﹣4
(1)求证:无论k为何值,函数图象与x轴总有交点;
(2)当k≠0时,A(n﹣3,n﹣7)、B(﹣n+1,n﹣7)是抛物线上的两个不同点:
①求抛物线的表达式;
②求n的值.
【解答】(1)证明:①当k=0时,函数为一次函数,即y=x﹣4,与x轴交于点(3,0);
②当k≠0时,函数为二次函数,
∵△=(﹣3k)2﹣4k×(﹣4)=(3k+)2≥0,即△≥0,
∴与x轴有一个或两个交点;
综上可知,无论k为何值,函数图象与x轴总有交点;
(2)①当k≠0时,函数C1:y=kx2+(﹣3k)x﹣4为二次函数,
∵(n﹣3,n﹣7)、(﹣n+1,n﹣7)是抛物线上的两个不同点,
∴抛物线的对称轴为直线x==﹣1,
∴﹣=﹣1,
解得k=,
∴抛物线的表达式为y=x2+x﹣4;
②∵(n﹣3,n﹣7)是抛物线y=x2+x﹣4上的点,
∴n﹣7=(n﹣3)2+(n﹣3)﹣4,
解得n1=,n2=3.
五、(本大题共2小题,每小题9分,共18分.)
21.(9分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.
【解答】解:(1)将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;
将x=600、y=18000和x=1000、y=26000代入,得:,
解得:;
(2)当0≤x<600时,
W=30x+(﹣0.01x2﹣20x+30000)=﹣0.01x2+10x+30000,
∵﹣0.01<0,W=﹣0.01(x﹣500)2+32500,
∴当x=500时,W取得最大值为32500元;
当600≤x≤1000时,
W=20x+6000+(﹣0.01x2﹣20x+30000)=﹣0.01x2+36000,
∵﹣0.01<0,
∴当600≤x≤1000时,W随x的增大而减小,
∴当x=600时,W取最大值为32400,
∵32400<32500,
∴W取最大值为32500元;
(3)由题意得:1000﹣x≥100,解得:x≤900,
由x≥700,
则700≤x≤900,
∵当700≤x≤900时,W随x的增大而减小,
∴当x=900时,W取得最小值27900元.
22.(9分)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为 60° ;
②线段AD,BE之间的数量关系为 AD=BE .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
【解答】解:(1)①如图1,
∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案为:AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如图2,
∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.
(3)点A到BP的距离为或.
理由如下:
∵PD=1,
∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,
∴点P在以BD为直径的圆上.
∴点P是这两圆的交点.
①当点P在如图3①所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,
∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.
∴BD=2.
∵DP=1,
∴BP=.
∵∠BPD=∠BAD=90°,
∴A、P、D、B在以BD为直径的圆上,
∴∠APB=∠ADB=45°.
∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,
∴由(2)中的结论可得:BP=2AH+PD.
∴=2AH+1.
∴AH=.
②当点P在如图3②所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH﹣PD.
∴=2AH﹣1.
∴AH=.
综上所述:点A到BP的距离为或.
六、(本大题1小题,满分12分.)
23.(12分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作BC的垂线,垂足为F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.
(1)求出抛物线的解析式;
(2)小明探究点P的位置时发现;当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值.请你判定该猜想是否正确,并说明理由;
(3)请求出△PDE的周长最小时点P的坐标;
(4)若将“使△PDE的面积为整数”的点记作“好点”,则存在有多少个“好点”?请直接写出“好点”的个数.
【解答】解:(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,
∴C(0,8),A(﹣8,0),
设抛物线解析式为:y=ax2+c,则,
解得:
故抛物线的解析式为:y=﹣x2+8;
(2)正确,
理由:设P(a,﹣a2+8),则F(a,8),
∵D(0,6),
∴PD===a2+2.
PF=8﹣(﹣a2+8)=a2,
∴PD﹣PF=2;
(3)在点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,
∵PD﹣PF=2,∴PD=PF+2,
∴PE+PD=PE+PF+2,
∴当P、E、F三点共线时,PE+PF最小,
此时点P,E的横坐标都为﹣4,
将x=﹣4代入y=﹣x2+8,得y=6,
∴P(﹣4,6),此时△PDE的周长最小.
(4)由(2)得:P(a,﹣a2+8),
∵点D、E的坐标分别为(0,6),(﹣4,0),
①当﹣4≤a<0时,S△PDE=(﹣a+4)(﹣a2+8)﹣[﹣•(﹣a2+8﹣6)+×4×6]=﹣a2﹣3a+4;
∴4<S△PDE≤12,
②当a=0时,S△PDE=4,
③﹣8<a<﹣4时,S△PDE=(﹣a2+8+6)×(﹣a)×﹣×4×6﹣(﹣a﹣4)×(﹣a2+8)×=﹣a2﹣3a+4,
∴12≤S△PDE≤13,
④当a=﹣8时,S△PDE=12,
∴△PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,
所以面积为整数时好点有11个,即存在11个好点.
江西省赣州市宁都县2021-2022学年八年级下学期期末检测数学试卷(含解析): 这是一份江西省赣州市宁都县2021-2022学年八年级下学期期末检测数学试卷(含解析),共16页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
初中数学8下2017-2018学年江西省赣州市宁都县八年级(上)期中数学试卷含答案含答案: 这是一份初中数学8下2017-2018学年江西省赣州市宁都县八年级(上)期中数学试卷含答案含答案,共23页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
2021-2022学年江西省赣州市宁都县八年级(下)期末数学试卷(Word解析版): 这是一份2021-2022学年江西省赣州市宁都县八年级(下)期末数学试卷(Word解析版),共22页。试卷主要包含了0分,6B,则DE的长为______.,0分),【答案】x≥-2等内容,欢迎下载使用。