初中数学北师大版七年级下册第五章 生活中的轴对称1 轴对称现象教学设计及反思
展开1 轴对称现象
教学目标
一、基本目标
1.经历观察生活中的轴对称现象、探索轴对称现象共同特征的过程,进一步积累数学活动经验和发展学生的空间观念.
2.理解轴对称图形和成轴对称的图形的定义,能够识别这些图形并能指出它们的对称轴.
3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和丰富的文化价值.
二、重难点目标
【教学重点】
通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴.
【教学难点】
理解轴对称图形和轴对称的联系与区别.
教学过程
环节1 自学提纲,生成问题
【5 min阅读】
阅读教材P115~P117的内容,完成下面练习.
【3 min反馈】
1.如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.
2.如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.
3.下列图形中是轴对称图形的有( B )
A.①② B.①④
C.②③ D.③④
4.两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.
解:如图所示:
它们的对称轴均为经过两圆圆心的一条直线.
环节2 合作探究,解决问题
活动1 小组讨论(师生互学)
【例1】判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.
【互动探索】(引发学生思考)如何判断一个图形是否是轴对称图形?如何找轴对称图形的对称轴?
【解答】(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)(8)有1条对称轴;(7)有4条对称轴;(10)有2条对称轴.
【互动总结】(学生总结,老师点评)判断一个图形是否为轴对称图形,关键是看能否找到一条直线,沿这条直线折叠,使它两旁的部分能够互相重合.
【例2】图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?
【互动探索】(引发学生思考)可用两个图形成轴对称的概念来解决.
【解答】图中有阴影的三角形与三角形1、3成轴对称.
整个图形是轴对称图形,它共有2条对称轴.
【互动总结】(学生总结,老师点评)(1)两个图形成轴对称与轴对称图形的联系与区别:
| 两个图形成轴对称 | 轴对称图形 |
联系 | 操作方式相同:沿一条直线折叠 | |
沿直线折叠后,直线两旁的图形能完全重合 | ||
可以相互转化:把成轴对称的两个图形看作一个整体,就可以得到一个轴对称图形;把轴对称图形两旁的部分分别看作两个图形,它们就是成轴对称的两个图形 | ||
区别 | 成轴对称是对于两个图形而言 | 轴对称图形是对于一个图形而言 |
两个图形分居一条直线两旁 | 一个图形被直线分成两部分 | |
折叠后,一个图形与另一个图形完全重合 | 折叠后,图形的一部分与另一部分互相重合(即重合到自身上) |
(2)轴对称图形是一个具有特殊形状的图形,而两个图形成轴对称是指两个图形之间的形状与位置的关系.
活动2 巩固练习(学生独学)
1.誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( C )
2.如图,某英语单词由四个字母组成,且四个字母都关于直线l对称,则这个英语单词的汉语意思为书.
3.试画出下列正多边形的所有对称轴,并完成表格.
正多边形的边数 | 3 | 4 | 5 | 6 | 7 | … |
对称轴的条数 | 3 | 4 | 5 | 6 | 7 | … |
根据上表,猜想正n边形有n条对称轴.
解:如图:
4.观察图中的各种图形,说明哪些图形放在一起可形成轴对称.
解:根据轴对称图形的性质得出:(1)和(6),(2)和(4),(9)和(10)能形成轴对称图形.
活动3 拓展延伸(学生对学)
【例3】轴对称在数学计算中有巧妙的应用.如图1,现要计算长方形中六个数字的和,我们发现,把长方形沿对称轴l1对折,重合的数字均为4,故六个数字的和为3×4=12;若沿对称轴l2对折,则六个数字的和可表示为4×2+2×2=12.受上面方法的启发,请快速计算正方形(图2)中各数字之和.
图1 图2
【互动探索】利用轴对称图形对称位置上的两数相加和相等来进行简便计算.
【解答】如图所示,一条对角线上的数都是5,若把这条对角线所在直线当作对称轴,把正方形对折一下,对称位置上的两数之和均为10,这样正方形中各数字之和为10×10+5×5=125.
【互动总结】(学生总结,老师点评)数形结合是初中数学的一种重要思想方法,在求一组有特殊规律的数字的和时,经常会用到对称的思想及其相关的知识.
环节3 课堂小结,当堂达标
(学生总结,老师点评)
轴对称现象
练习设计
请完成本课时对应练习!
初中数学北师大版七年级下册1 轴对称现象教案: 这是一份初中数学北师大版七年级下册1 轴对称现象教案,共3页。教案主要包含了学习目标,学习重点,学习难点等内容,欢迎下载使用。
北师大版七年级下册1 轴对称现象教学设计及反思: 这是一份北师大版七年级下册1 轴对称现象教学设计及反思,共2页。教案主要包含了教学目标,教学重难点,教学准备,教学过程,作业布置,教学反思等内容,欢迎下载使用。
初中数学北师大版七年级下册1 用表格表示的变量间关系表格教案及反思: 这是一份初中数学北师大版七年级下册1 用表格表示的变量间关系表格教案及反思,共3页。