年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题4.2 函数零点性质(特色专题卷)(人教A版2019必修第一册)(原卷版)

    专题4.2 函数零点性质(特色专题卷)(人教A版2019必修第一册)(原卷版)第1页
    专题4.2 函数零点性质(特色专题卷)(人教A版2019必修第一册)(原卷版)第2页
    专题4.2 函数零点性质(特色专题卷)(人教A版2019必修第一册)(原卷版)第3页
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题4.2 函数零点性质(特色专题卷)(人教A版2019必修第一册)(原卷版)

    展开

    这是一份专题4.2 函数零点性质(特色专题卷)(人教A版2019必修第一册)(原卷版),共7页。
    专题4.2 函数零点性质(特色专题卷)考试时间:120分钟;满分:150姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选8题,多选4题,填空4题,解答6题,满分150分,限时150分钟,试卷紧扣教材,细分题组,精选一年好题,两年真题,练基础,提能力!一.    选择题(共8小题,满分40分,每小题5分) 1.(2021秋•建湖县校级月考)若曲线x轴有且只有2个交点,则实数a的取值范围是(  )A1a2 Ba3 C1a2a3 D1a2a32.(2021春•凉州区校级期末)已知函数fx,若方程fx)=k有且仅有两个不等实根,则实数k的取值范围是(  )Ak1 B1k3 C0k1 Dk33.(2021秋•门头沟区校级月考)若函数fx)=|logax|2xa0a1)的两个零点是mn,则(  )Amn1 Bmn1 C0mn1 D.以上都不对4.(2021秋•五华区月考)设fx)是定义域为R的奇函数,且f2+x)=f(﹣x),当x[12]时,fx)=ax2+bf1+f2)=3.将函数gx)=fx)﹣1的正零点从小到大排序,则gx)的第4个正零点为(  )A B C D5.(2021•安徽模拟)已知函数fx,方程fx)﹣10有两解,则a的取值范围是(  )A.(1 B.(0 C.(01 D.(1+∞)6.(2021春•福州期末)已知fx,则函数gx)=fx)﹣ex的零点个数为(  )A1 B2 C3 D47.(2021春•聊城期末)数学家高斯是世界著名的数学家之一,他一生成就极为丰硕,仅以他的名字“高斯”命名的成果多达110个,为数学家中之最对于高斯函数y[x],其中[x]表示不超过x的最大整数,如[1.7]1[1.2]=﹣2{x}表示实数x的非负纯小数,即{x}x[x],如{1.7}0.7{1.2}0.8.若函数y{x}1+logaxa0,且a1)有且仅有3个不同的零点,则实数a的取值范围为(  )A[34 B.(34] C[23 D.(238.(2021春•九江期末)设函数fx,若函数yfx)﹣2t在区间(﹣11)内有且仅有两个零点,则实数t的取值范围是(  )A.(+∞) B.(﹣∞,0 C.(0 D[0二.    多选题(共4小题,满分20分,每小题5分)9.(2020秋•济宁期末)若方程x2+2x+λ0在区间(﹣10)上有实数根,则实数λ的取值可以是(  )A.﹣3 B C D110.(2021春•鼓楼区校级期末)若直线y3a与函数y|ax1|a0,且a1)的图象有两个公共点,则a可以是(  )A2 B C D11.(2020秋•邵阳县期末)已知函数fx,若函数gx)=fx)﹣m恰有3个零点,则m的取值可能为(  )A B1 C2 D12.(2020秋•桐城市校级月考)关于x的方程(x22x222xx2+k0,下列命题正确的有(  )A.存在实数k,使得方程无实根 B.存在实数k,使得方程恰有2个不同的实根 C.存在实数k,使得方程恰有3个不同的实根 D.存在实数k,使方程恰有4个不同的实根 三.    填空题(共4小题,满分20分,每小题5分)13.(2021秋•闽侯县校级月考)已知方程4x24kx+k+20kR)有两个负根,则k的取值集合为   14.(2021•岳阳县校级开学)若函数fx)=|2x4|a存在两个零点,且一个为正数,另一个为负数,则实数a的取值范围为   15.(2021秋•桂林月考)已知函数,函数gx)=m,若fx)=gx),x[33]恰有1个零点,则m的取值范围为   16.(2021秋•河南月考)已知关于x的方程|log2x|tt0)有两个实根mnmn),则下列不等式中正确的有   .(填写所有正确结论的序号)m2+n22mn);m2+n22mn);m2n22mn);m2n22mn). 四.        解答题(共6小题,满分70分)17.(2021春•宣城期中)若abcR,求证:一元二次方程x2+ax+b10x2+bx+c10x2+cx+a10中至少有一个方程有实根.              18.(2021秋•长宁区校级月考)已知关于x的方程为:k2x2+k+3x+10……kxR1)若方程有两个不同的实数根,求k的取值范围;2)设方程的两根分别为x1x2,用k的代数式表示x1³+x1²x2+x1x2²+x2³.        19.(2021•涪城区校级开学)已知函数1)求函数yfx)的定义域;2)若方程fx)=1+logax有两个不等实根,求实数a的取值范围.               20.(2021秋•靖远县校级月考)已知fx)是定义在R上的奇函数,当x(﹣∞,0]时,fx)=﹣x22x1)求fx)的解析式;2)若函数yfx)﹣λ有三个零点,求实数λ的取值范围.        21.(2021秋•红花岗区校级月考)已知函数fx)=x2+2ax+1aR).1)若函数fx)在范围[20]上存在零点,求a的取值范围;2)当x[11]时,求函数fx)的最小值ga).              22.(2020秋•河南期末)设函数fx)=4x+12m2x3mmR).1)当m2时,求fx)的值域;2)若fx)有且只有一个零点,求实数m的取值范围.
     

    相关试卷

    专题5.1 y=Asin(ωx+φ)的图象与性质(特色专题卷)(人教A版2019必修第一册)(原卷版):

    这是一份专题5.1 y=Asin(ωx+φ)的图象与性质(特色专题卷)(人教A版2019必修第一册)(原卷版),共10页。

    专题4.3 复合方程的零点(特色专题卷)(人教A版2019必修第一册)(原卷版):

    这是一份专题4.3 复合方程的零点(特色专题卷)(人教A版2019必修第一册)(原卷版),共7页。

    专题4.3 复合方程的零点(特色专题卷)(人教A版2019必修第一册)(解析版):

    这是一份专题4.3 复合方程的零点(特色专题卷)(人教A版2019必修第一册)(解析版),共25页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map