数学九年级上册2.2 一元二次方程的解法多媒体教学ppt课件
展开
这是一份数学九年级上册2.2 一元二次方程的解法多媒体教学ppt课件,共16页。PPT课件主要包含了学习目标,导入新课,情境引入,讲授新课,因式分解,-49x0,要点归纳,因式分解法的概念,因式分解法的基本步骤,4x2x等内容,欢迎下载使用。
1.理解用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.(重点)3.会根据方程的特点选用恰当的方法解一元二次方程.(难点)
我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求 (x+3)(x-5)=0的解吗?
引例:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过xs物体离地面的高度(单位:m)为10-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗(精确到0.01s)?
分析:设物体经过 x s落回地面,这时它离地面的高度为0,即
10x-4.9x2 =0 ①
因式分解法解一元二次方程
∵ a=4.9,b=-10,c=0.
∴ b2-4ac = (-10)2-4×4.9×0 =100.
公式法解方程10x-4.9x2=0.
配方法解方程10x-4.9x2=0.
10x-4.9x2=0.
两个因式乘积为 0,说明什么?
降次,化为两个一次方程
解两个一次方程,得出原方程的根
这种解法是不是很简单?
x(10-4.9x) =0 ②
这种通过因式分解,将一个一元二次方程转化为两个一元一次方程来求解的方法叫做因式分解法.
一移-----方程的右边=0;
二分-----方程的左边因式分解;
三化-----方程化为两个一元一次方程;
四解-----写出方程两个解;
简记歌诀:右化零 左分解两因式 各求解
试一试:下列各方程的根分别是多少?
(1) x(x-2)=0;
(1) x1=0,x2=2;
(2) (y+2)(y-3)=0;
(2) y1=-2,y2=3 ;
(3) (3x+6)(2x-4)=0;
(3) x1=-2,x2=2;
(4) x1=0,x2=1.
例1 用因式分解法解下列方程:
因式分解,得 ( 5x-1)( 2x-3 )=0.
5x-1=0或2x-3=0,
解:(1) 原方程可化为
65-2x=0或5-2x=0,
解:(1)因式分解,得
x-2=0或x+1=0,
x1=2,x2=-1.
(2)移项、合并同类项,得
因式分解,得 ( 2x+1)( 2x-1 )=0.
2x+1=0或2x-1=0,
(x-2)(x+1)=0.
1.解方程x(x+1)=2时,要先把方程化为 ;再选择适当的方法求解,得方程的两根为x1= , x2= .
2.下面的解法正确吗?如果不正确,错误在哪?并请改正过来.
解方程 (x-5)(x+2)=18.
解: 原方程化为: (x-5)(x+2)=18 . ①
由x-5=3, 得x=8; ②
由x+2=6, 得x=4; ③
所以原方程的解为x1=8或x2=4.
解: 原方程化为: x2 -3x -28= 0, (x-7)(x+4)=0, x1=7,x2=-4.
x2-2x+1 = 0.
( x-1 )( x-1 ) = 0.
有 x - 1 = 0 或 x - 1 = 0,
( 2x + 11 )( 2x- 11 ) = 0.
有 2x + 11 = 0 或 2x - 11= 0,
4.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.
解:设小圆形场地的半径为r,
根据题意 ( r + 5 )2×π=2r2π.
答:小圆形场地的半径是
相关课件
这是一份湘教版九年级上册第2章 一元二次方程2.2 一元二次方程的解法说课课件ppt,文件包含222公式法ppt、222公式法doc等2份课件配套教学资源,其中PPT共15页, 欢迎下载使用。
这是一份湘教版九年级上册2.2 一元二次方程的解法教案配套ppt课件,文件包含223因式分解法第2课时选择合适的方法解一元二次方程ppt、223因式分解法第2课时选择合适的方法解一元二次方程doc等2份课件配套教学资源,其中PPT共13页, 欢迎下载使用。
这是一份初中数学湘教版九年级上册2.2 一元二次方程的解法说课ppt课件,共14页。PPT课件主要包含了学习目标,导入新课,化方程为一般式,讲授新课,灵活选用方法解方程,拓展提升,要点归纳,解法选择基本思路,于是得,x0或x+3=0等内容,欢迎下载使用。