初中湘教版1.1 二次函数多媒体教学课件ppt
展开
这是一份初中湘教版1.1 二次函数多媒体教学课件ppt,共24页。PPT课件主要包含了问题引入,这是什么样的函数呢,你能想出办法来吗,如何确定a是多少,知识要点,实际问题,建立二次函数模型,实际问题的解,典例精析等内容,欢迎下载使用。
1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题.(重点)2.利用二次函数解决拱桥及运动中的有关问题.(重、难点)3.能运用二次函数的图象与性质进行决策.
白娘子初见许仙是在西湖断桥,现在有一座类似的拱桥,它的纵截面是抛物线的一部分,跨度是4.9m,当水面宽是4m时,拱顶离水面2m.现在想了解水面宽度变化时,拱顶离水面的高度怎样变化.你能想出办法来吗?
怎样建立直角坐标系比较简单呢?
以拱顶为原点,抛物线的对称轴为y轴,建立直角坐标系,如图.
从图看出,什么形式的二次函数,它的图象是这条抛物线呢?
已知水面宽4m时,拱顶离水面高2米,因此点A(2,-2)在抛物线上,由此得出
由于拱桥的跨度为4.9m,因此自变量x的取值范围是:
水面宽3m时 从而因此拱顶离水面高1.125m
现在你能求出水面宽3m时,拱顶离水面高多少吗?
建立二次函数模型解决实际问题的基本步骤是什么?
利用二次函数的图象和性质求解
例1 某公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少要多少才能使喷出的水流不致落到池外?
解:建立如图所示的坐标系,根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25).
根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.
当y=0时,可求得点C的坐标为(2.5,0) ; 同理,点 D的坐标为(-2.5,0) .
设抛物线为y=a(x+h)2+k,由待定系数法可求得抛物线表达式为:y=- (x-1)2+2.25.
例2 如图,一名运动员在距离篮球圈中心4m(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少?
解:如图,建立直角坐标系.则点A的坐标是(1.5,3.05),篮球在最大高度时的位置为B(0,3.5).以点C表示运动员投篮球的出手处.
设以y轴为对称轴的抛物线的解析式为 y=a(x-0)2+k ,即y=ax2+k.而点A,B在这条抛物线上,所以有
所以该抛物线的表达式为y=-0.2x2+3.5.当 x=-2.5时,y=2.25 .故该运动员出手时的高度为2.25m.
1.足球被从地面上踢起,它距地面的高度h(m)可用公式h=-4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在 s后落地.
2.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式为 ,那么铅球运动过程中最高点离地面的距离为 米.
3.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为 ,当水面离桥拱顶的高度DO是2m时,这时水面宽度AB为( )
A.-10m B. m C. m D. m
4.某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.(1)在如图所示的平面直角坐标系中,求抛物线的表达式.
解:(1)设抛物线的表达式为y=ax2 . ∵点B(6,﹣5.6)在抛物线的图象上, ∴﹣5.6=36a, ∴抛物线的表达式为
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?
(2)设窗户上边所在直线交抛物线于C,D两点,D点坐标为(k,t),已知窗户高1.6m,∴t=﹣5.6﹣(﹣1.6)=﹣4∴ ,解得k= ,即k1≈5.07,k2≈﹣5.07∴CD=5.07×2≈10.14(m)设最多可安装n扇窗户,∴1.5n+0.8(n﹣1)+0.8×2≤10.14,解得n≤4.06.则最大的正整数为4.答:最多可安装4扇窗户.
5.悬索桥两端主塔塔顶之间的主悬钢索,其形状可近似地看作抛物线,水平桥面与主悬钢索之间用垂直钢索连接.已知两端主塔之间的水平距离为900 m,两主塔塔顶距桥面的高度为81.5 m,主悬钢索最低点离桥面的高度为0.5 m.(1)若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,如图所示,求这条抛物线对应的函数表达式;
解:根据题意,得抛物线的顶点坐标为(0,0.5),对称轴为y轴,设抛物线的函数表达式为y=ax2+0.5.抛物线经过点(450,81.5),代入上式,得81.5=a•4502+0.5.解得故所求表达式为
(1)若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,如图所示,求这条抛物线对应的函数表达式;
(2)计算距离桥两端主塔分别为100m,50m处垂直钢索的长.
解:当x=450-100=350(m)时,得
当x=450-50=400(m)时,得
相关课件
这是一份初中数学冀教版九年级下册30.4 二次函数的应用精品课件ppt,文件包含304第1课时抛物线形问题课件ppt、304第1课时抛物线形问题教案doc等2份课件配套教学资源,其中PPT共26页, 欢迎下载使用。
这是一份九年级下册第26章 二次函数26.3 实践与探索教学ppt课件,共17页。
这是一份初中数学湘教版九年级下册1.5 二次函数的应用教课课件ppt,共18页。PPT课件主要包含了情境引入,如何解决问题,新知探究,你能想出办法来吗,这是什么样的函数呢,我们来比较一下,-2-2,2-2,谁最合适,如何确定a是多少等内容,欢迎下载使用。