年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021年湖南省株洲市中考数学真题 (含解析)

    2021年湖南省株洲市中考数学真题  解析版第1页
    2021年湖南省株洲市中考数学真题  解析版第2页
    2021年湖南省株洲市中考数学真题  解析版第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年湖南省株洲市中考数学真题 (含解析)

    展开

    这是一份2021年湖南省株洲市中考数学真题 (含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2021年湖南省株洲市中考数学试卷
    一、选择题(本大题共10小题,每小题有且只有一个正确答案,每小题4分,共40分)
    1.若a的倒数为2,则a=(  )
    A. B.2 C.﹣ D.﹣2
    2.方程﹣1=2的解是(  )
    A.x=2 B.x=3 C.x=5 D.x=6
    3.如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=(  )

    A.38° B.48° C.58° D.66°
    4.某月1日﹣10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是(  )

    A.1日﹣10日,甲的步数逐天增加
    B.1日﹣6日,乙的步数逐天减少
    C.第9日,甲、乙两人的步数正好相等
    D.第11日,甲的步数不一定比乙的步数多
    5.计算:=(  )
    A.﹣2 B.﹣2 C.﹣ D.2
    6.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为(  )
    A.1.8升 B.16升 C.18升 D.50升
    7.不等式组的解集为(  )
    A.x<1 B.x≤2 C.1<x≤2 D.无解
    8.如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠FAI=(  )

    A.10° B.12° C.14° D.15°
    9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,点P在x轴的正半轴上,且OP=1,设M=ac(a+b+c),则M的取值范围为(  )

    A.M<﹣1 B.﹣1<M<0 C.M<0 D.M>0
    10.某限高曲臂道路闸口如图所示,AB垂直地面l1于点A,BE与水平线l2的夹角为α(0°≤α≤90°),EF∥l1∥l2,若AB=1.4米,BE=2米,车辆的高度为h(单位:米),不考虑闸口与车辆的宽度:
    ①当α=90°时,h小于3.3米的车辆均可以通过该闸口;
    ②当α=45°时,h等于2.9米的车辆不可以通过该闸口;
    ③当α=60°时,h等于3.1米的车辆不可以通过该闸口.
    则上述说法正确的个数为(  )

    A.0个 B.1个 C.2个 D.3个
    二、填空题(本大题共8小题,每小题4分,共32分)
    11.计算:(2a)2•a3=   .
    12.因式分解:6x2﹣4xy=   .
    13.据报道,2021年全国高考报名人数为1078万,将1078万用科学记数法表示为1.078×10n,则n=   .
    14.抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是    .
    15.如图所示,线段BC为等腰△ABC的底边,矩形ADBE的对角线AB与DE交于点O,若OD=2,则AC=   .

    16.中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如表:
    中药
    黄芪
    焦山楂
    当归
    销售单价(单位:元/千克)
    80
    60
    90
    销售额(单位:元)
    120
    120
    360
    则在这个时间段,该中药房的这三种中药的平均销售量为    千克.
    17.点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,满足:当x1>0时,均有y1<y2,则k的取值范围是    .
    18.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(“”为“蜨”,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“樣”和“隻”为“样”和“只”).图②为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(“一樣二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=24°,则∠DCP=   度.

    三、解答题(本大题共8小题,共78分)
    19.(6分)计算:|﹣2|+sin60°﹣2﹣1.
    20.(8分)先化简,再求值:,其中x=﹣2.
    21.(8分)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.
    (1)求证:四边形BFED是平行四边形;
    (2)若tan∠ABD=,求线段BG的长度.

    22.(10分)将一物体(视为边长为米的正方形ABCD)从地面PQ上挪到货车车厢内.如图所示,刚开始点B与斜面EF上的点E重合,先将该物体绕点B(E)按逆时针方向旋转至正方形A1BC1D1的位置,再将其沿EF方向平移至正方形A2B2C2D2的位置(此时点B2与点G重合),最后将物体移到车厢平台面MG上.已知MG∥PQ,∠FBP=30°,过点F作FH⊥MG于点H,FH=米,EF=4米.
    (1)求线段FG的长度;
    (2)求在此过程中点A运动至点A2所经过的路程.

    23.(10分)目前,国际上常用身体质量指数“BMI”作为衡量人体健康状况的一个指标,其计算公式:BMI=(G表示体重,单位:千克;h表示身高,单位:米).已知某区域成人的BMI数值标准为:BMI<16为瘦弱(不健康);16≤BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖(不健康).
    某研究人员从该区域的一体检中心随机抽取55名成人的体重、身高数据组成一个样本,计算每名成人的BMI数值后统计:
    (男性身体属性与人数统计表)
    身体属性
    人数
    瘦弱
    2
    偏瘦
    2
    正常
    1
    偏胖
    9
    肥胖
    m
    (1)求这个样本中身体属性为“正常”的人数;
    (2)某女性的体重为51.2千克,身高为1.6米,求该女性的BMI数值;
    (3)当m≥3且n≥2(m、n为正整数)时,求这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值.
    24.(10分)如图所示,在平面直角坐标系xOy中,一次函数y=2x的图象l与函数y=(k>0,x>0)的图象(记为Г)交于点A,过点A作AB⊥y轴于点B,且AB=1,点C在线段OB上(不含端点),且OC=t,过点C作直线l1∥x轴,交l于点D,交图象Г于点E.
    (1)求k的值,并且用含t的式子表示点D的横坐标;
    (2)连接OE、BE、AE,记△OBE、△ADE的面积分别为S1、S2,设U=S1﹣S2,求U的最大值.

    25.(13分)如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.
    (1)求证:直线CF是⊙O的切线;
    (2)连接OD、AD、AC、DC,若∠COD=2∠BOC.
    ①求证:△ACD∽△OBE;
    ②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG的长度.

    26.(13分)已知二次函数y=ax2+bx+c(a>0).
    (1)若a=,b=c=﹣2,求方程ax2+bx+c=0的根的判别式的值;
    (2)如图所示,该二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1<0<x2,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足∠ACO=∠ABD,﹣+c=x1.
    ①求证:△AOC≌△DOB;
    ②连接BC,过点D作DE⊥BC于点E,点F(0,x1﹣x2)在y轴的负半轴上,连接AF,且∠ACO=∠CAF+∠CBD,求的值.


    2021年湖南省株洲市中考数学试卷
    参考答案与试题解析
    一、选择题(本大题共10小题,每小题有且只有一个正确答案,每小题4分,共40分)
    1.若a的倒数为2,则a=(  )
    A. B.2 C.﹣ D.﹣2
    【分析】根据倒数的定义:乘积是1的两数互为倒数,即可得出答案.
    【解答】解:∵a的倒数为2,
    ∴a=.
    故选:A.
    2.方程﹣1=2的解是(  )
    A.x=2 B.x=3 C.x=5 D.x=6
    【分析】移项,合并同类项,系数化成1即可.
    【解答】解:﹣1=2,
    移项,得=2+1,
    合并同类项,得=3,
    系数化成1,得x=6,
    故选:D.
    3.如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=(  )

    A.38° B.48° C.58° D.66°
    【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.
    【解答】解:∵∠DCE=132°,
    ∴∠DCB=180°﹣∠DCE=180°﹣132°=48°,
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠DCB=48°,
    故选:B.
    4.某月1日﹣10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是(  )

    A.1日﹣10日,甲的步数逐天增加
    B.1日﹣6日,乙的步数逐天减少
    C.第9日,甲、乙两人的步数正好相等
    D.第11日,甲的步数不一定比乙的步数多
    【分析】根据图中给出的甲乙两人这10天的数据,依次判断A,B,C,D选项即可.
    【解答】解:A.1日﹣10日,甲的步数逐天增加;故A正确,不符合题意;B.1日﹣5日,乙的步数逐天减少;6日步数的比5日的步数多,故B错误,符合题意;
    C.第9日,甲、乙两人的步数正好相等;故C正确,不符合题意;
    D.第11日,甲的步数不一定比乙的步数多;故D正确,不符合题意;
    故选:B.
    5.计算:=(  )
    A.﹣2 B.﹣2 C.﹣ D.2
    【分析】直接利用二次根式的性质化简得出答案.
    【解答】解:﹣4×=﹣4×=﹣2.
    故选:A.
    6.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为(  )
    A.1.8升 B.16升 C.18升 D.50升
    【分析】先将单位换成升,根据:“50单位的粟,可换得30单位的粝米…”列式可得结论.
    【解答】解:根据题意得:3斗=30升,
    设可以换得的粝米为x升,
    则=,
    解得:x==18(升),
    答:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为18升.
    故选:C.
    7.不等式组的解集为(  )
    A.x<1 B.x≤2 C.1<x≤2 D.无解
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解答】解:解不等式x﹣2≤0,得:x≤2,
    解不等式﹣x+1>0,得:x<1,
    则不等式组的解集为x<1.
    故选:A.
    8.如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠FAI=(  )

    A.10° B.12° C.14° D.15°
    【分析】分别求出正六边形,正五边形的内角可得结论.
    【解答】解:在正六边形ABCDEF内,正五边形ABGHI中,∠FAB=120°,∠IAB=108°,
    ∴∠FAI=∠FAB﹣∠IAB=120°﹣108°=12°,
    故选:B.
    9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,点P在x轴的正半轴上,且OP=1,设M=ac(a+b+c),则M的取值范围为(  )

    A.M<﹣1 B.﹣1<M<0 C.M<0 D.M>0
    【分析】由图象得x=1时,y<0即a+b+c<0,当y=0时,得与x轴两个交点,x1x2=<0,即可判断M的范围.
    【解答】解:∵OP=1,P不在抛物线上,
    ∴当抛物线y=ax2+bx+c(a≠0),
    x=1时,y=a+b+c<0,
    当抛物线y=0时,得ax2+bx+c=0,
    由图象知x1x2=<0,
    ∴ac<0,
    ∴ac(a+b+c)>0,
    即M>0,
    故选:D.
    10.某限高曲臂道路闸口如图所示,AB垂直地面l1于点A,BE与水平线l2的夹角为α(0°≤α≤90°),EF∥l1∥l2,若AB=1.4米,BE=2米,车辆的高度为h(单位:米),不考虑闸口与车辆的宽度:
    ①当α=90°时,h小于3.3米的车辆均可以通过该闸口;
    ②当α=45°时,h等于2.9米的车辆不可以通过该闸口;
    ③当α=60°时,h等于3.1米的车辆不可以通过该闸口.
    则上述说法正确的个数为(  )

    A.0个 B.1个 C.2个 D.3个
    【分析】根据题意列出h和角度之间的关系式即可判断.
    【解答】解:由题知,
    限高曲臂道路闸口高度为:1.4+2×sinα,
    ①当α=90°时,h<(1.4+2)米,即h<3.4米即可通过该闸口,
    故①正确;
    ②当α=45°时,h<(1.4+2×)米,即h<2.814米即可通过该闸口,
    故②正确;
    ③当α=60°时,h<(1.4+2×)米,即h<3.132米即可通过该闸口,
    故③不正确;
    故选:C.
    二、填空题(本大题共8小题,每小题4分,共32分)
    11.计算:(2a)2•a3= 4a5 .
    【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.
    【解答】解:(2a)2•a3=4a2•a3=(4×1)(a2•a3)=4a5.
    故答案为4a5.
    12.因式分解:6x2﹣4xy= 2x(3x﹣2y) .
    【分析】直接提取公因式2x,即可分解因式得出答案.
    【解答】解:6x2﹣4xy=2x(3x﹣2y).
    故答案为:2x(3x﹣2y).
    13.据报道,2021年全国高考报名人数为1078万,将1078万用科学记数法表示为1.078×10n,则n= 7 .
    【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
    【解答】解:1078万=10780000=1.078×107,
    则n=7.
    故答案为:7.
    14.抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是   .
    【分析】画树状图展示所有4种等可能的结果数,再找出两次都是“正面朝上”的结果数,然后根据概率公式求解.
    【解答】解:画树状图如下:

    共有4种等可能的结果数,其中两次都是“正面朝上”的结果有1种,
    ∴两次都是“正面朝上”的概率=.
    故答案为:.
    15.如图所示,线段BC为等腰△ABC的底边,矩形ADBE的对角线AB与DE交于点O,若OD=2,则AC= 4 .

    【分析】由矩形的性质可得AB=2OD=4,由等腰三角形的性质可求解.
    【解答】解:∵四边形ADBE是矩形,
    ∴AB=DE,AO=BO,DO=OE,
    ∴AB=DE=2OD=4,
    ∵AB=AC,
    ∴AC=4,
    故答案为4.
    16.中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如表:
    中药
    黄芪
    焦山楂
    当归
    销售单价(单位:元/千克)
    80
    60
    90
    销售额(单位:元)
    120
    120
    360
    则在这个时间段,该中药房的这三种中药的平均销售量为  2.5 千克.
    【分析】利用销售数量=销售额÷销售单价,可分别求出黄芪、焦山楂、当归三种中药的销售数量,再求出三者的算术平均数即可得出结论.
    【解答】解:黄芪的销售量为120÷80=1.5(千克),
    焦山楂的销售量为120÷60=2(千克),
    当归的销售量为360÷90=4(千克).
    该中药房的这三种中药的平均销售量为=2.5(千克).
    故答案为:2.5.
    17.点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,满足:当x1>0时,均有y1<y2,则k的取值范围是  k<0 .
    【分析】根据反比例函数的性质,即可解决问题.
    【解答】解:∵点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,
    又∵0<x1<x1+1时,y1<y2,
    ∴函数图象在二四象限,
    ∴k<0,
    故答案为k<0.
    18.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(“”为“蜨”,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“樣”和“隻”为“样”和“只”).图②为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(“一樣二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=24°,则∠DCP= 21 度.

    【分析】由点P与点A关于直线DQ对称求出∠PDQ,再由△ABD和△CBD求出∠DDB和∠ADB,进而计算出∠CDP,最后利用三角形内角和即可求解.
    【解答】解:∵点P与点A关于直线DQ对称,∠ADQ=24°,
    ∴∠PDQ=∠ADQ=24°,AD=DP,
    ∵△ABD和△CBD为两个全等的等腰直角三角形,
    ∴∠DDB=∠ADB=45°,CD=AD,
    ∴∠CDP=∠DDB+∠ADB+∠PDQ+∠ADQ=138°,
    ∵AD=DP,CD=AD,
    ∴CD=DP,即△DCP是等腰三角形,
    ∴∠DCP=(180°﹣∠CDP)=21°.
    故答案为:21.
    三、解答题(本大题共8小题,共78分)
    19.(6分)计算:|﹣2|+sin60°﹣2﹣1.
    【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.
    【解答】解:原式=2+×﹣
    =2+﹣
    =3.
    20.(8分)先化简,再求值:,其中x=﹣2.
    【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.
    【解答】解:原式=•﹣
    =﹣
    =﹣,
    当x=﹣2时,
    原式=﹣=﹣=﹣.
    21.(8分)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.
    (1)求证:四边形BFED是平行四边形;
    (2)若tan∠ABD=,求线段BG的长度.

    【分析】(1)由矩形的性质可得DC∥AB,可得结论;
    (2)由平行四边形的性质可得DB∥EF,可证∠ABD=∠F,由锐角三角函数可求解.
    【解答】证明:(1)∵四边形ABCD是矩形,
    ∴DC∥AB,
    又∵DE=BF,
    ∴四边形DEFB是平行四边形;
    (2)∵四边形DEFB是平行四边形,
    ∴DB∥EF,
    ∴∠ABD=∠F,
    ∴tan∠ABD=tanF=,
    ∴,
    又∵BF=2,
    ∴BG=.
    22.(10分)将一物体(视为边长为米的正方形ABCD)从地面PQ上挪到货车车厢内.如图所示,刚开始点B与斜面EF上的点E重合,先将该物体绕点B(E)按逆时针方向旋转至正方形A1BC1D1的位置,再将其沿EF方向平移至正方形A2B2C2D2的位置(此时点B2与点G重合),最后将物体移到车厢平台面MG上.已知MG∥PQ,∠FBP=30°,过点F作FH⊥MG于点H,FH=米,EF=4米.
    (1)求线段FG的长度;
    (2)求在此过程中点A运动至点A2所经过的路程.

    【分析】(1)在Rt△FGH中,由FG=2FH,可得结论.
    (2)求出GE,利用弧长公式求解即可.
    【解答】解:(1)∵GM∥PA,
    ∴∠FGH=∠FBP=30°,
    ∵FH⊥GM,
    ∴∠FHG=90°,
    ∴FG=2FH=(米).

    (2)∵EF=4米,FG=米.
    ∴EG=EF﹣FG=4﹣=(米),
    ∵∠ABA1=180°﹣90°﹣30°=60°,BA=米,
    ∴点A运动至点A2所经过的路程=+=4(米).
    23.(10分)目前,国际上常用身体质量指数“BMI”作为衡量人体健康状况的一个指标,其计算公式:BMI=(G表示体重,单位:千克;h表示身高,单位:米).已知某区域成人的BMI数值标准为:BMI<16为瘦弱(不健康);16≤BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖(不健康).
    某研究人员从该区域的一体检中心随机抽取55名成人的体重、身高数据组成一个样本,计算每名成人的BMI数值后统计:
    (男性身体属性与人数统计表)
    身体属性
    人数
    瘦弱
    2
    偏瘦
    2
    正常
    1
    偏胖
    9
    肥胖
    m
    (1)求这个样本中身体属性为“正常”的人数;
    (2)某女性的体重为51.2千克,身高为1.6米,求该女性的BMI数值;
    (3)当m≥3且n≥2(m、n为正整数)时,求这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值.
    【分析】(1)样本中身体属性为“正常”的女性人数加上样本中身体属性为“正常”的男性人数即可;
    (2)根据计算公式求出该女性的BMI数值即可;
    (3)当m≥3且n≥2(m、n为正整数)时,根据抽取人数为55计算出m的值,即可求解.
    【解答】解:(1)9+1=10(人),
    答:这个样本中身体属性为“正常”的人数是10;
    (2)BMI===20,
    答:该女性的BMI数值为20;
    (3)当m≥3且n≥2(m、n为正整数)时,
    这个样本中身体属性为“不健康”的男性人数:≥17,
    这个样本中身体属性为“不健康”的女性人数:n+4+9+8+4≥27,
    ∵2+2+1+9+m+n+4+9+8+4=55,
    ∴m+n=16,
    由条形统计图得n<4,
    ,m=13时,n=3,这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值为=;
    m=14时,n=2,这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值为=.
    答:这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值为或.
    24.(10分)如图所示,在平面直角坐标系xOy中,一次函数y=2x的图象l与函数y=(k>0,x>0)的图象(记为Г)交于点A,过点A作AB⊥y轴于点B,且AB=1,点C在线段OB上(不含端点),且OC=t,过点C作直线l1∥x轴,交l于点D,交图象Г于点E.
    (1)求k的值,并且用含t的式子表示点D的横坐标;
    (2)连接OE、BE、AE,记△OBE、△ADE的面积分别为S1、S2,设U=S1﹣S2,求U的最大值.

    【分析】(1)先求出点A的横坐标,再代入直线y=2x中求出点A的坐标,再将点A坐标代入反比例函数解析式中求出k;先求出点C的纵坐标,代入直线y=2x中求出点D的横坐标,即可得出结论;
    (2)根据点C的纵坐标求出点E的坐标,进而求出CE=,进而得出S1=,由(1)知,A(1,2),D(t,t),求出DE=﹣t,进而得出S2=S△ADE=t2﹣t+﹣1,进而得出U=S1﹣S2=﹣(t﹣1)2+,即可得出结论.
    【解答】解:(1)∵AB⊥y轴,且AB=1,
    ∴点A的横坐标为1,
    ∵点A在直线y=2x上,
    ∴y=2×1=2,
    ∴点A(1,2),
    ∴B(0,2),
    ∵点A在函数y=上,
    ∴k=1×2=2,
    ∵OC=t,
    ∴C(0,t),
    ∵CE∥x轴,
    ∴点D的纵坐标为t,
    ∵点D在直线y=2x上,t=2x,
    ∴x=t,
    ∴点D的横坐标为t;

    (2)由(1)知,k=2,
    ∴反比例函数的解析式为y=,
    由(1)知,CE∥x轴,
    ∴C(0,t),
    ∴点E的纵坐标为t,
    ∵点E在反比例函数y=的图象上,
    ∴x=,
    ∴E(,t),
    ∴CE=,
    ∵B(0,2),
    ∴OB=2.
    ∴S1=S△OBE=OB•CE=×2×=
    由(1)知,A(1,2),D(t,t),
    ∴DE=﹣t,
    ∵CE∥x轴,
    ∴S2=S△ADE=DE(yA﹣yD)=(﹣t)(2﹣t)=t2﹣t+﹣1,
    ∴U=S1﹣S2=﹣(t2﹣t+﹣1)=﹣t2+t+1=﹣(t﹣1)2+,
    ∵点C在线段OB上(不含端点),
    ∴0<t<2,
    ∴当t=1时,U最大=.
    25.(13分)如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.
    (1)求证:直线CF是⊙O的切线;
    (2)连接OD、AD、AC、DC,若∠COD=2∠BOC.
    ①求证:△ACD∽△OBE;
    ②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG的长度.

    【分析】(1)利用勾股定理的逆定理证明∠ECF=90°,可得结论.
    (2)①证明∠DAC=∠EOB,∠DCA=∠EBO,可得结论.
    ②利用相似三角形的性质求出AC,再求出CM,CG,可得结论.
    【解答】(1)证明:∵9(EF2﹣CF2)=OC2,OC=3OE,
    ∴9(EF2﹣CF2)=9EC2,
    ∴EF2=EC2+CF2,
    ∴∠ECF=90°,
    ∴OC⊥CF,
    ∴直线CF是⊙O的切线.

    (2)①证明:∵∠COD=2∠DAC,∠COD=2∠BOC,
    ∴∠DAC=∠EOB,
    ∵∠DCA=∠EBO,
    ∴△ACD∽△OBE.

    ②解:∵OB=OC,OC=3EC,
    ∴OB:OE=3:2,
    ∵△ACD∽△OBE,
    ∴=,
    ∴==,
    ∵AD=4,
    ∴AC=6,
    ∵M是AC的中点,
    ∴CM=MA=3,
    ∵EG∥OA,
    ∴==,
    ∴CG=2,
    ∴MG=CM﹣CG=3﹣2=1.

    26.(13分)已知二次函数y=ax2+bx+c(a>0).
    (1)若a=,b=c=﹣2,求方程ax2+bx+c=0的根的判别式的值;
    (2)如图所示,该二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1<0<x2,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足∠ACO=∠ABD,﹣+c=x1.
    ①求证:△AOC≌△DOB;
    ②连接BC,过点D作DE⊥BC于点E,点F(0,x1﹣x2)在y轴的负半轴上,连接AF,且∠ACO=∠CAF+∠CBD,求的值.

    【分析】(1)△=b2﹣4ac=(﹣2)2﹣4××(﹣2)=8;
    (2)①由x1+x2=﹣得到x2=﹣c=OC,进而求解;
    ②证明∠CBD=∠AFO,而tan∠CBD===,tan∠AFO====tan∠CBD=,即可求解.
    【解答】解:(1)当若a=,b=c=﹣2时,△=b2﹣4ac=(﹣2)2﹣4××(﹣2)=8;

    (2)①设ax2+bx+c=0,则x1+x2=﹣,x1x2=,
    则+x1=﹣x2=c,即x2=﹣c=OC,x1=÷x2=﹣,
    ∵OB=x2=CO,∠ACO=∠ABD,∠COA=∠BOD=90°,
    ∴△AOC≌△DOB(AAS);

    ②∵∠OCA=∠CAF+∠CFA,∠ACO=∠CAF+∠CBD,
    ∴∠CBD=∠AFO,
    ∵OB=OC,故∠OCD=45°,
    ∵CD=OC﹣OD=OC﹣OA=﹣c﹣,
    则DE=CD=﹣(c+)=CE,
    则BE=BC﹣CE=OB﹣CE=﹣c+(﹣c+),
    则tan∠CBD===,
    而tan∠AFO====tan∠CBD=,
    解得ca=﹣2,
    而==﹣ac=2,
    故的值为2.

    相关试卷

    2023年湖南省株洲市中考数学真题试卷(解析版):

    这是一份2023年湖南省株洲市中考数学真题试卷(解析版),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖南省株洲市中考数学真题:

    这是一份2023年湖南省株洲市中考数学真题,文件包含精品解析湖南省株洲市中考数学真题原卷版docx、精品解析湖南省株洲市中考数学真题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    2023年湖南省株洲市中考数学真题:

    这是一份2023年湖南省株洲市中考数学真题,文件包含湖南省株洲市中考数学真题解析版docx、湖南省株洲市中考数学真题原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map