还剩31页未读,
继续阅读
2021年江苏省镇江市中考数学真题试卷(含解析)
展开
2021年江苏省镇江市中考数学试卷一、填空题(本大题共12小题,每小题2分,24分)1.﹣5的绝对值等于 .2.使有意义的x的取值范围是 .3.8的立方根是 .4.如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是 .5.一元二次方程x(x+1)=0的两根分别为 .6.小丽的笔试成绩为100分,面试成绩为90分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是 分.7.某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是 环.8.如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则= .9.如图,点A,B,C,O在网格中小正方形的顶点处,直线l经过点C,O,将△ABC沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P,Q分别是A,M的对应点.已知网格中每个小正方形的边长都等于1,则PQ的长为 .10.已知一次函数的图象经过点(1,2),且函数值y随自变量x的增大而减小,写出符合条件的一次函数表达式 .(答案不唯一,写出一个即可)11.一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .12.如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为 .二、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,恰有一项是符合题目要求的)13.(3分)如图所示,该几何体的俯视图是( )A.正方形 B.长方形 C.三角形 D.圆14.(3分)2021年1﹣4月份,全国规模以上工业企业利润总额超25900亿元,其中25900用科学记数法表示为( )A.25.9×103 B.2.59×104 C.0.259×105 D.2.59×10515.(3分)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于( )A.27° B.29° C.35° D.37°16.(3分)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为( )A.1840 B.1921 C.1949 D.202117.(3分)设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积( )A.有最大值π B.有最小值π C.有最大值π D.有最小值π18.(3分)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是( )A.A1 B.B1 C.A2 D.B3三、解答题(本大题共10小题,共78分.解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)计算:(1﹣)0﹣2sin45°+;(2)化简:(x2﹣1)÷(1﹣)﹣x.20.(10分)(1)解方程:﹣=0;(2)解不等式组:.21.(6分)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.22.(6分)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,∠1=30°,∠2=20°,当∠ABE= °时,四边形BFDE是菱形.23.(6分)《九章算术》被历代数学家尊为“算经之首”.下面是其卷中记载的关于“盈不足”的一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?这段话的意思是:今有人合伙买金,每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱.合伙人数、金价各是多少?请解决上述问题.24.(6分)如表是第四至七次全国人口普查的相关数据.(1)设下一次人口普查我国大陆人口共a人,其中具有大学文化程度的有b人,则该次人口普查中每10万大陆人口中具有大学文化程度的人数为 ;(用含有a,b的代数式表示)(2)如果将2020年大陆人口中具有各类文化程度(含大学、高中、初中、小学、其他)的人数分布制作成扇形统计图,求其中表示具有大学文化程度类别的扇形圆心角的度数;(精确到1°)(3)你认为统计“每10万大陆人口中具有大学文化程度的人数”这样的数据有什么好处?(写出一个即可)25.(6分)如图,点A和点E(2,1)是反比例函数y=(x>0)图象上的两点,点B在反比例函数y=(x<0)的图象上,分别过点A,B作y轴的垂线,垂足分别为点C,D,AC=BD,连接AB交y轴于点F.(1)k= ;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2;(3)连接CE,DE,当∠CED=90°时,直接写出点A的坐标: .26.(8分)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.27.(11分)将一张三角形纸片ABC放置在如图所示的平面直角坐标系中,点A(﹣6,0),点B(0,2),点C(﹣4,8),二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,该抛物线的对称轴经过点C,顶点为D.(1)求该二次函数的表达式及点D的坐标;(2)点M在边AC上(异于点A,C),将三角形纸片ABC折叠,使得点A落在直线AB上,且点M落在边BC上,点M的对应点记为点N,折痕所在直线l交抛物线的对称轴于点P,然后将纸片展开.①请作出图中点M的对应点N和折痕所在直线l;(要求:尺规作图,不写作法,保留作图痕迹)②连接MP,NP,在下列选项中:A.折痕与AB垂直,B.折痕与MN的交点可以落在抛物线的对称轴上,C.=,D.=,所有正确选项的序号是 .③点Q在二次函数y=ax2+bx+c(a≠0)的图象上,当△PDQ∼△PMN时,求点Q的坐标.28.(11分)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABC﹣DEF”.若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线.【活动】小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线.请用无刻度的直尺在图1中作出其他的面积平分线.(作出一种即可,不写作法,保留作图痕迹)【思考】如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ (填“是”或“不是”)L图形ABCDEF的面积平分线.【应用】在L图形ABCDEF形中,已知AB=4,BC=6.(1)如图4,CD=AF=1.①该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;②该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,BG的长为 .(2)设=t(t>0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围 .2021年江苏省镇江市中考数学试卷参考答案与试题解析一、填空题(本大题共12小题,每小题2分,24分)1.﹣5的绝对值等于 5 .【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣5的绝对值|﹣5|=5.故答案是:5.2.使有意义的x的取值范围是 x≥7 .【分析】直接利用二次根式被开方数是非负数,进而得出答案.【解答】解:使有意义,则x﹣7≥0,解得:x≥7.故答案为:x≥7.3.8的立方根是 2 .【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.4.如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是 120° .【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,可设这个正六边形的每一个内角的度数为x,故又可表示成6x,列方程可求解.【解答】解:设这个正六边形的每一个内角的度数为x,则6x=(6﹣2)•180°,解得x=120°.故答案为:120°.5.一元二次方程x(x+1)=0的两根分别为 x1=0,x2=﹣1 .【分析】利用因式分解法求出解即可.【解答】解:方程x(x+1)=0,可得x=0或x+1=0,解得:x1=0,x2=﹣1.故答案为:x1=0,x2=﹣1.6.小丽的笔试成绩为100分,面试成绩为90分,若笔试成绩、面试成绩按6:4计算平均成绩,则小丽的平均成绩是 96 分.【分析】根据加权平均数的定义计算可得.【解答】解:小丽的平均成绩是=96(分),故答案为:96.7.某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是 9 环.【分析】根据统计图中的数据,可以得到中间的两个数据是9,9,然后计算它们的平均数即可得到相应的中位数.【解答】解:由统计图可得,中间的两个数据是9,9,故射击成绩的中位数是(9+9)÷2=9(环),故答案为:9.8.如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则= .【分析】根据相似三角形对应中线的比等于相似比求出,根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵M,N分别是DE,BC的中点,∴AM、AN分别为△ADE、△ABC的中线,∵△ADE∽△ABC,∴==,∴=()2=,故答案为:.9.如图,点A,B,C,O在网格中小正方形的顶点处,直线l经过点C,O,将△ABC沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P,Q分别是A,M的对应点.已知网格中每个小正方形的边长都等于1,则PQ的长为 .【分析】连接PQ,AM,根据PQ=AM即可解答.【解答】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM=,∴PQ=.故答案为:.10.已知一次函数的图象经过点(1,2),且函数值y随自变量x的增大而减小,写出符合条件的一次函数表达式 y=﹣x+3 .(答案不唯一,写出一个即可)【分析】由函数值y随自变量x的增大而减小,利用一次函数的性质可得出k<0,取k=﹣1,由一次函数的图象经过点(1,2),利用一次函数图象上点的坐标特征可得出2=﹣1+b,解之即可得出b值,进而可得出符合条件的一次函数表达式.【解答】解:设一次函数表达式为y=kx+b.∵函数值y随自变量x的增大而减小,∴k<0,取k=﹣1.又∵一次函数的图象经过点(1,2),∴2=﹣1+b,∴b=3,∴一次函数表达式为y=﹣x+3.故答案为:y=﹣x+3.11.一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 2 .【分析】放入的红球个数为2,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.【解答】解:假设袋中红球个数为1,此时袋中由1个黄球、1个红球,搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.假设袋中的红球个数为2,列树状图如下:由图可知,共有9种情况,其中两次摸到红球的情况有4种,摸出一红一黄的有4种结果,∴P(摸出一红一黄)=P(摸出两红)=,符合题意,所以放入的红球个数为2,故答案为:2.12.如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为 9 .【分析】由旋转知△BPD是顶角为120°的等腰三角形,可求得BD=BP,当BP最大时,BD取最大值,即点P与点A重合时,BP=BA最大,求出AB的长即可解决问题.【解答】解:∵将线段BP绕点P逆时针旋转120°,得到线段DP,∴BP=PD,∴△BPD是等腰三角形,∴∠PBD=30°,过点P作PH⊥BD于点H,∴BH=DH,∵cos30°==,∴BH=BP,∴BD=BP,∴当BP最大时,BD取最大值,即点P与点A重合时,BP=BA最大,过点A作AG⊥BC于点G,∵AB=AC,AG⊥BC,∴BG=BC=3,∵cos∠ABC=,∴,∴AB=9,∴BD最大值为:BP=9.故答案为:9.二、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,恰有一项是符合题目要求的)13.(3分)如图所示,该几何体的俯视图是( )A.正方形 B.长方形 C.三角形 D.圆【分析】根据俯视图的定义,从上面看该几何体,所得到的图形进行判断即可.【解答】解:从上面看该几何体,所看到的图形是三角形.故选:C.14.(3分)2021年1﹣4月份,全国规模以上工业企业利润总额超25900亿元,其中25900用科学记数法表示为( )A.25.9×103 B.2.59×104 C.0.259×105 D.2.59×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:25900=2.59×104,故选:B.15.(3分)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于( )A.27° B.29° C.35° D.37°【分析】连接OD,根据切线的性质得到∠ADO=90°,根据直角三角形的性质得到∠AOD=90°﹣36°=54°,根据圆周角定理即可得到结论.【解答】解:连接OD,∵⊙O与边AC相切于点D,∴∠ADO=90°,∵∠BAC=36°,∴∠AOD=90°﹣36°=54°,∴∠AFD=AOD=54°=27°,故选:A.16.(3分)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为( )A.1840 B.1921 C.1949 D.2021【分析】把1921代入程序中计算,判断即可得到结果.【解答】解:把1921代入得:(1921﹣1840+50)×(﹣1)=﹣131<1000,把﹣131代入得:(﹣131﹣1840+50)×(﹣1)=1921>1000,则输出结果为1921+100=2021.故选:D.17.(3分)设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积( )A.有最大值π B.有最小值π C.有最大值π D.有最小值π【分析】由2r+l=6,得出l=6﹣2r,代入圆锥的侧面积公式:S侧=πrl,利用配方法整理得出,S侧=﹣2π(r﹣)2+π,再根据二次函数的性质即可求解.【解答】解:∵2r+l=6,∴l=6﹣2r,∴圆锥的侧面积S侧=πrl=πr(6﹣2r)=﹣2π(r2﹣3r)=﹣2π[(r﹣)2﹣]=﹣2π(r﹣)2+π,∴当r=时,S侧有最大值π.故选:C.18.(3分)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是( )A.A1 B.B1 C.A2 D.B3【分析】把A1,A2,B1,B3的式子表示出来,再结合值等于789,可求相应的n的值,即可判断.【解答】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故选:B.三、解答题(本大题共10小题,共78分.解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)计算:(1﹣)0﹣2sin45°+;(2)化简:(x2﹣1)÷(1﹣)﹣x.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数值即可求出答案.(2)根据分式的加减运算以及乘除运算法则即可求出答案.【解答】解:(1)原式=1﹣2×+=1.(2)原式=(x+1)(x﹣1)÷﹣x=(x+1)(x﹣1)•﹣x=x(x+1)﹣x=x(x+1﹣1)=x2.20.(10分)(1)解方程:﹣=0;(2)解不等式组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集即可.【解答】解:(1)去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,解得:x=6,检验:把x=6代入得:x(x﹣2)=24≠0,∴分式方程的解为x=6;(2),由①得:x≥1,由②得:x>2,则不等式组的解集为x>2.21.(6分)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果和满足条件的结果数,再根据概率公式求解即可.【解答】解:画树状图得:共8种等可能情况,其中这三人在同一个献血站献血的有2种结果,所以这三人在同一个献血站献血的概率为=.22.(6分)如图,四边形ABCD是平行四边形,延长DA,BC,使得AE=CF,连接BE,DF.(1)求证:△ABE≌△CDF;(2)连接BD,∠1=30°,∠2=20°,当∠ABE= 10 °时,四边形BFDE是菱形.【分析】(1)由“SAS”可证△ABE≌△CDF;(2)通过证明BE=DE,可得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠BCD,∴∠1=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)当∠ABE=10°时,四边形BFDE是菱形,理由如下:∵∠1=30°,∠2=20°,∴∠ABD=∠1﹣∠2=10°,∴∠DBE=20°,∴∠DBE=∠EDB=20°,∴BE=DE,∴平行四边形BFDE是菱形,故答案为10.23.(6分)《九章算术》被历代数学家尊为“算经之首”.下面是其卷中记载的关于“盈不足”的一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?这段话的意思是:今有人合伙买金,每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱.合伙人数、金价各是多少?请解决上述问题.【分析】设共x人合伙买金,金价为y钱,根据“每人出400钱,会剩余3400钱;每人出300钱,会剩余100钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设共x人合伙买金,金价为y钱,依题意得:,解得:.答:共33人合伙买金,金价为9800钱.24.(6分)如表是第四至七次全国人口普查的相关数据.(1)设下一次人口普查我国大陆人口共a人,其中具有大学文化程度的有b人,则该次人口普查中每10万大陆人口中具有大学文化程度的人数为 ;(用含有a,b的代数式表示)(2)如果将2020年大陆人口中具有各类文化程度(含大学、高中、初中、小学、其他)的人数分布制作成扇形统计图,求其中表示具有大学文化程度类别的扇形圆心角的度数;(精确到1°)(3)你认为统计“每10万大陆人口中具有大学文化程度的人数”这样的数据有什么好处?(写出一个即可)【分析】(1)根据“每10万大陆人口中具有大学文化程度的人数”的意义求解即可;(2)求出2020年,“具有大学文化程度”的人数所占总人数的百分比,即可求出相应的圆心角度数;(3)根据“每10万大陆人口中具有大学文化程度的人数”的实际意义得出结论.【解答】解:由题意得,下一次人口普查中每10万大陆人口中具有大学文化程度的人数为,故答案为:;(2)360°×≈56°,答:表示具有大学文化程度类别的扇形圆心角的度数大约为56°;(3)比较直观的反应出“每10万大陆人口中具有大学文化程度的人数”的大小,说明国民素质和文化水平的情况.25.(6分)如图,点A和点E(2,1)是反比例函数y=(x>0)图象上的两点,点B在反比例函数y=(x<0)的图象上,分别过点A,B作y轴的垂线,垂足分别为点C,D,AC=BD,连接AB交y轴于点F.(1)k= 2 ;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2;(3)连接CE,DE,当∠CED=90°时,直接写出点A的坐标: (,) .【分析】(1)将E点坐标代入函数解析式即可求得k值;(2)根据AAS可证△BDF≌△ACF,根据全等三角形面积相等即可得证结论;(3)设A点坐标为(a,),则可得C(0,),D(0,﹣),根据勾股定理求出a值,即可求得A点的坐标.【解答】解:(1)∵点E(2,1)是反比例函数y=(x>0)图象上的点,∴=1,解得k=2,故答案为:2;(2)在△BDF和△ACF中,,∴△BDF≌△ACF(AAS),∴S△BDF=S△ACF,即a×(﹣m)=a×(+m),整理得am=﹣2;(3)设A点坐标为(a,),则C(0,),D(0,﹣),∵E(2,1),∠CED=90°,∴CE2+DE2=CD2,即22+(1﹣)2+22+(1+)2=(+)2,解得a=﹣2(舍去)或a=,∴A点的坐标为(,).26.(8分)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.【分析】(1)如图1中,连接AP,过点O作OH⊥AB于H,交CD于E.求出OE的长,与半径半径,可得结论.(2)如图2中,延长AE交BC的延长线于T,连接PQ.利用面积法求出BP,可得结论.【解答】解:(1)如图1﹣1中,连接AP,过点O作OH⊥AB于H,交CD于E.∵四边形ABCD是正方形,∴AB=AD=4,∠ABP=90°,∴AP===5,∵OH⊥AB,∴AH=AB,∵OA=OP,AH=HB,∴OH=PB=,∵∠D=∠DAH=∠AHE=90°,∴四边形AHED是矩形,∴OE⊥CE,EH=AD=4,∴OE=EH=OH=4﹣=,∴OE=OP,∴直线CD与⊙O相切.(2)如图2中,延长AE交BC的延长线于T,连接PQ.∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,∴△ADE≌△TCE(ASA),∴AD=CT=4,∴BT=BC+CT=4+4=8,∵∠ABT=90°,∴AT===4,∵AP是直径,∴∠AQP=90°,∵PA平分∠EAB,PQ⊥AQ,PB⊥AB,∴PB=PQ,设PB=PQ=x,∵S△ABT=S△ABP+S△ABT,∴×4×8=×4×x+×4×x,∴x=2﹣2,∴tan∠EAP=tan∠PAB==.27.(11分)将一张三角形纸片ABC放置在如图所示的平面直角坐标系中,点A(﹣6,0),点B(0,2),点C(﹣4,8),二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,该抛物线的对称轴经过点C,顶点为D.(1)求该二次函数的表达式及点D的坐标;(2)点M在边AC上(异于点A,C),将三角形纸片ABC折叠,使得点A落在直线AB上,且点M落在边BC上,点M的对应点记为点N,折痕所在直线l交抛物线的对称轴于点P,然后将纸片展开.①请作出图中点M的对应点N和折痕所在直线l;(要求:尺规作图,不写作法,保留作图痕迹)②连接MP,NP,在下列选项中:A.折痕与AB垂直,B.折痕与MN的交点可以落在抛物线的对称轴上,C.=,D.=,所有正确选项的序号是 A,D .③点Q在二次函数y=ax2+bx+c(a≠0)的图象上,当△PDQ∼△PMN时,求点Q的坐标.【分析】(1)利用待定系数法求解即可.(2)①根据要求作出图形即可.②如图2中,设线段MN的垂直平分线交抛物线对称轴于P,交MN于点Q,很高点M作MH⊥CD,过点Q作QJ⊥CD于J,QT⊥MH于T.想办法证明△PMN是等腰直角三角形,可得结论.③设P(﹣4,m).由△PDQ∽△PMN,△PMN是等腰直角三角形,推出△PDQ是等腰直角三角形,推出∠DPQ=90°,DP=PQ=m+,推出Q(﹣+m,m),构建方程求出m即可.【解答】解(1)由题意得:, 解之得:a=,b=,c=2,∴y=+,∴当x=﹣4时,y==﹣,∴D(﹣4,﹣).(2)①如图1中,点N,直线l即为所求.②如图2中,设线段MN的垂直平分线交抛物线对称轴于P,交MN于点Q,很高点M作MH⊥CD,过点Q作QJ⊥CD于J,QT⊥MH于T.由题意A(﹣6,0),B(0,2),C(﹣4,8),∴直线AC的解析式为y=4x+24,直线AB的解析式为y=x+2,直线BC的解析式为y=﹣x+2,∵MN∥AB,∴可以假设直线MN的解析式为y=x+t,由,解得,∴M(,),由.解得,∴N(,),∴Q((,),∵QJ⊥CD,QT⊥MH,∴QJ=+4=,QT=﹣=,∴QJ=QT,∵∠PJQ=∠MTQ=90°,∠QPJ=∠QMT,QJ=QT,∴△PJQ≌△MTQ(AAS),∴PQ=MQ,∵∠PQM=90°,∴∠PMN=∠MPQ=45°,∵PM=PN,∴∠PMN=∠PNM=45°,∴∠MPN=90°,∴△PMN是等腰直角三角形,∴=,故选项D正确,B,C错误,∵将三角形纸片ABC折叠,使得点A落在直线AB上,且点M落在边BC上,∴折痕与AB垂直,故选项A正确,故答案为:A,D.③设P(﹣4,m).∵△PDQ∽△PMN,△PMN是等腰直角三角形,∴△PDQ是等腰直角三角形,∴∠DPQ=90°,DP=PQ=m+,∴Q(﹣4+m+,m),即Q(﹣+m,m),把Q的坐标代入y=+,得到,m=(﹣+m)2+(﹣+m)+2,整理得,9m2﹣42m﹣32=0,解得m=或﹣(舍弃),∴Q(2,),根据对称性可知Q′(﹣10,)也满足条件,综上所述,满足条件的点Q的坐标为(2,)或(﹣10,).28.(11分)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB,FE,DC为铅直方向的边,AF,ED,BC为水平方向的边,点E在AB,CD之间,且在AF,BC之间,我们称这样的图形为“L图形”,记作“L图形ABC﹣DEF”.若直线将L图形分成面积相等的两个图形,则称这样的直线为该L图形的面积平分线.【活动】小华同学给出了图1的面积平分线的一个作图方案:如图2,将这个L图形分成矩形AGEF、矩形GBCD,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线.请用无刻度的直尺在图1中作出其他的面积平分线.(作出一种即可,不写作法,保留作图痕迹)【思考】如图3,直线O1O2是小华作的面积平分线,它与边BC,AF分别交于点M,N,过MN的中点O的直线分别交边BC,AF于点P,Q,直线PQ 是 (填“是”或“不是”)L图形ABCDEF的面积平分线.【应用】在L图形ABCDEF形中,已知AB=4,BC=6.(1)如图4,CD=AF=1.①该L图形的面积平分线与两条水平的边分别相交于点P,Q,求PQ长的最大值;②该L图形的面积平分线与边AB,CD分别相交于点G,H,当GH的长取最小值时,BG的长为 .(2)设=t(t>0),在所有的与铅直方向的两条边相交的面积平分线中,如果只有与边AB,CD相交的面积平分线,直接写出t的取值范围 <t< .【分析】【活动】如图1,根据题意把原本图形分成左右两个矩形,这两个矩形的对称中心O1,O2所在直线是该L图形的面积平分线;【思考】如图2,证明△OQN≌△OPM(AAS),根据割补法可得直线PQ是L图形ABCDEF的面积平分线;【应用】(1)①建立平面直角坐标系,分两种情况:如图3﹣1和3﹣2,根据中点坐标公式和待定系数法可得面积平分线的解析式,并计算P和Q的坐标,利用两点的距离公式可得PQ的长,并比较大小可得结论;②当GH⊥AB时,GH最小,设BG=x,根据面积相等列方程,解出即可;(2)如图5,由已知得:CD=tAF,直线DE将图形分成上下两个矩形,当上矩形面积小于下矩形面积时,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,列不等式可得t的取值.【解答】解:【活动】如图1,直线O1O2是该L图形的面积平分线;【思考】如图2,∵∠A=∠B=90°,∴AF∥BC,∴∠NQO=∠MPO,∵点O是MN的中点,∴ON=OM,在△OQN和△OPM中,,∴△OQN≌△OPM(AAS),∴S△OQN=S△OPM,∵S梯形ABMN=SMNFEDC,∴S梯形ABMN﹣S△OPM=SMNFEDC﹣S△OQN,即SABPON=SCDEFQOM,∴SABPON+S△OQN=SCDEFQOM+S△OPM,即S梯形ABPQ=SCDEFQP,∴直线PQ是L图形ABCDEF的面积平分线.故答案为:是;【应用】(1)①如图3﹣1,以直线OC为x轴,OA为y轴,以B为原点,建立平面直角坐标系,同理确定L图形ABCDEF的面积平分线:直线O1O2,∵AB=4,BC=6,AF=CD=1,∴B(0,0),F(1,4),D(6,1),K(1,0),∴线段BF的中点O1的坐标为(,2),线段DK的中点O2的坐标为(,),设直线O1O2的解析式为:y=kx+b,则,解得:,∴直线O1O2的解析式为:y=﹣x+,当y=0时,﹣x+=0,解得:x=,∴Q(,0),当y=1时,﹣x+=1,解得:x=,∴P(,1),∴PQ==;如图3﹣2,同理确定平面直角坐标系,画出L图形ABCDEF的面积平分线:直线O3O4,∵G(0,1),F(1,4),C(6,0),∴线段GF的中点O3的坐标为(,),线段CG的中点O4的坐标为(3,),设直线O3O4的解析式为:y=mx+n,则,解得:,∴直线O3O4的解析式为:y=﹣x+,当y=0时,﹣x+=0,解得:x=,∴Q(,0),当y=1时,﹣x+=1,解得:x=,∴P(,1),∴PQ==;∵<;∴PQ长的最大值为;②如图4,当GH⊥AB时GH最短,过点E作EM⊥AB于M,设BG=x,则MG=1﹣x,根据上下两部分面积相等可知,6x=(4﹣1)×1+(1﹣x)×6,解得x=,即BG=;故答案为:;(2)∵=t(t>0),∴CD=tAF,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,如图5,直线DE将图形分成上下两个矩形,当上矩形面积小于下矩形面积时,在所有的与铅直方向的两条边相交的面积平分线中,只有与边AB,CD相交的面积平分线,即(4﹣tAF)•AF<6t•AF,∴AF>﹣6,∵0<AF<6,∴0<﹣6<6,∴<t<.故答案为:<t<.年份我国大陆人口总数其中具有大学文化程度的人数每10万大陆人口中具有大学文化程度的人数1990年11336825011612467814222000年12658300004571000036112010年133972485211963679089302020年141177872421836076715467年份我国大陆人口总数其中具有大学文化程度的人数每10万大陆人口中具有大学文化程度的人数1990年11336825011612467814222000年12658300004571000036112010年133972485211963679089302020年141177872421836076715467
相关资料
更多