反比例函数的图像与性质PPT课件免费下载
展开一、【学习目标】
1. 理解反比例函数的系数 k 的几何意义,并将其灵活 运用于坐标系中图形的面积计算中. (重点、难点)2. 能够解决反比例函数与一次函数的综合性问题. (重 点、难点)3. 体会“数”与“形”的相互转化,学习数形结合的思想 方法,进一步提高对反比例函数相关知识的综合运 用能力. (重点、难点)
二、【课程的主要内容】
反比例函数的图象是什么?
反比例函数的性质与 k 有怎样的关系?
反比例函数的图象是双曲线
当 k > 0 时,两条曲线分别位于第一、三象限,在每个象限内,y 随 x 的增大而减小;
当 k < 0 时,两条曲线分别位于第二、四象限,在每个象限内,y 随 x 的增大而增大.
反比例函数解析式中 k 的几何意义
2. 若在反比例函数 中也 用同样的方法分别取 P,Q 两点,填写表格:
由前面的探究过程,可以猜想:
我们就 k < 0 的情况给出证明:
设点 P 的坐标为 (a,b)
∴ S矩形 AOBP=PB·PA=-a·b=-ab=-k;
若点 P 在第二象限,则 a<0,b>0,
若点 P 在第四象限,则 a>0,b<0,
∴ S矩形 AOBP=PB·PA=a· (-b)=-ab=-k.
综上,S矩形 AOBP=|k|.
自己尝试证明 k > 0的情况.
点 Q 是其图象上的任意一 点,作 QA 垂直于 y 轴,作 QB 垂直于x 轴,矩形AOBQ 的面积与 k 的关系是 S矩形AOBQ= . 推理:△QAO与△QBO的 面积和 k 的关系是 S△QAO=S△QBO= .
反比例函数的面积不变性
A. SA >SB>SC B. SA
2. 如图,过反比例函数 图象上的一点 P,作 PA⊥x 轴于A. 若△POA 的面积为 6,则 k = .
提示:当反比例函数图象在第二、四象限时,注意 k<0.
3. 若点 P 是反比例函数图象上的一点,过点 P 分别向 x 轴、y 轴作垂线,垂足分别为点 M,N,若四边形 PMON 的面积为 3,则这个反比例函数的关系式是 .
如图所示,直线与双曲线交于 A,B 两点,P 是AB 上的点,△ AOC 的面积 S1、△ BOD 的面积 S2、 △ POE 的面积 S3 的大小关系为 .
S1 = S2 < S3
解析:由反比例函数面积的不变性易知 S1 = S2. PE 与双曲线的一支交于点 F,连接 OF,易知,S△OFE = S1 = S2,而 S3>S△OFE,所以 S1,S2,S3的大小关系为S1 = S2 < S3
解析:∵ x2-x1 = 4,y1-y2 =2,∴BG = 4,AG =5,∴S△ABG =4×5÷2=10.
由反比例函数面积的不变性可知,S长方形ACOE = S长方形BDOF = k .
∴ S五边形 AEODB = S四边形ACOE +S四边形BDOF- S四边形FOCG+ S△ABG= k + k -2+4=14.
如图,已知点 A,B 在双曲线 上,AC⊥x 轴于点C,BD⊥y 轴于点 D,AC 与 BD 交于点 P,P 是 AC 的中点,若△ABP 的面积为6,则 k = .
反比例函数与一次函数的综合
由一次函数增减性得k>0
由一次函数与y轴交点知-k>0,则k<0
例5 如图是一次函数 y1=kx+b 和反比例函数 的图象,观察图象,当 y1﹥y2 时,x 的取值范围为 .
-2< x <0 或 x >3
解析:y1﹥y2 即一次函数图象处于反比例函数图象的上方时. 观察右图,可知-2< x <0 或 x >3.
方法总结:对于一些题目,借助函数图象比较大小更加简洁明了.
-1< x <0 或 x >2
例6 已知一个正比例函数与一个反比例函数的图象交于点 P (-3,4).试求出它们的解析式,并画出图象.
由于这两个函数的图象交于点 P (-3,4),则点 P (-3,4) 是这两个函数图象上的点, 即点 P 的坐标分别满足这两个解析式.
这两个图象有何共同特点?你能求出另外一个交点的坐标吗?说说你发现了什么?
(2,6),(-2,-6)
解析:联立两个函数解析式,解方程即可.
-k + b =2,
A. 4 B. 2 C. -2 D.不确定
3. 反比例函数 的图象与一次函数 y = 2x +1 的 图象的一个交点是 (1,k),则反比例函数的解析 式是_______.
4. 如图,直线 y=k1x + b 与反比例函数 (x>0)交于A,B两点,其横坐标分别为1和5,则不等式k1x +b > 的解集是___________.
所以一次函数的解析式为 y = 4x-2.
把A,B两点坐标代入一次函数解析式中,得到a =4,b =-2.
6. 如图,反比例函数 与一次函数 y =-x + 2 的图象交于 A,B 两点. (1) 求 A,B 两点的坐标;
所以A(-2,4),B(4,-2).
作AC⊥x轴于C,BD⊥x轴于D,则AC=4,BD=2.
(2) 求△AOB的面积.
解:一次函数与x轴的交点为M (2,0), ∴OM=2.
∴S△OMB=OM·BD÷2=2×2÷2=2,
∴S△OMA=OM·AC÷2=2×4÷2=4,
∴S△AOB=S△OMB+S△OMA=2+4=6.
位似PPT课件免费下载: 人教版初中数学九年级下册课文《位似》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。
估算PPT课件免费下载: 北师大版初中数学八年级上册课文《估算》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。
数轴PPT课件免费下载: 人教版初中数学七年级上册课文《数轴》,完整版PPT课件免费下载,优秀PPT背景图搭配,精美的免费ppt模板。轻松备课,欢迎免费下载使用。