人教A版 (2019)必修 第二册第十章 概率本章综合与测试同步达标检测题
展开
这是一份人教A版 (2019)必修 第二册第十章 概率本章综合与测试同步达标检测题,共4页。试卷主要包含了 互斥事件、对立事件的概率,古典概型,事件的相互独立性,6,0,概率与统计的综合问题等内容,欢迎下载使用。
1. 互斥事件、对立事件的概率
(1)互斥事件与对立事件的概率计算
①若事件A1,A2,…,An彼此互斥,则
P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
②设事件A的对立事件是A,则P(A)=1-P(A).
(2)求复杂事件的概率常用的两种方法
①将所求事件转化成彼此互斥的事件的和.
②先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.
例 受轿车在保修期内的维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,甲品牌车保修期为3年,乙品牌车保修期为2年,现从该厂已售出的两种品牌的轿车中分别随机抽取50辆,统计出在保修期内首次出现故障的车辆数据如下:
(1)从该厂生产的甲种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(2)从该厂生产的乙种品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率.
(注:将频率视为概率)
解:(1)设A,B,C分别表示甲品牌轿车首次出现故障在第1年,第2年和第3年之内,设D表示甲品牌轿车首次出现故障在保修期内,因为A,B,C是彼此互斥的,
其概率分别为P(A)=eq \f(2,50)=eq \f(1,25),P(B)=eq \f(1,50),P(C)=eq \f(3,50),
所以P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=eq \f(3,25),
即首次出现故障发生在保修期内的概率为eq \f(3,25).
(2)乙品牌轿车首次出现故障发生在保修期内的概率为eq \f(2+3,50)=eq \f(1,10).
2.古典概型
求解古典概型概率“四步”法
例 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,求选出的2名教师来自同一学校的概率.
解:(1)从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2,乙男)、(甲男1,乙女1)、(甲男1,乙女2)、(甲男2,乙女1)、(甲男2,乙女2)、(甲女,乙女1)、(甲女,乙女2)、(甲女,乙男),共9种;选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2,乙男)、(甲女,乙女1)、(甲女,乙女2),共4种,所以选出的2名教师性别相同的概率为eq \f(4,9).
(2)从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2,乙男)、(甲男1,乙女1)、(甲男1,乙女2)、(甲男2,乙女1)、(甲男2,乙女2)、(甲女,乙女1)、(甲女,乙女2)、(甲女,乙男)、(甲男1,甲男2)、(甲男1,甲女)、(甲男2,甲女)、(乙男,乙女1)、(乙男,乙女2)、(乙女1,乙女2),共15种;选出的2名教师来自同一学校的所有可能的结果为(甲男1,甲男2)、(甲男1,甲女)、(甲男2,甲女)、(乙男,乙女1)、(乙男,乙女2)、(乙女1,乙女2),共6种,所以选出的2名教师来自同一学校的概率为eq \f(6,15)=eq \f(2,5).
3.事件的相互独立性
利用相互独立事件求复杂事件概率的解题思路
(1)将待求复杂事件转化为几个彼此互斥的简单事件的和.
(2)将彼此互斥的简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.
(3)代入概率的积、和公式求解.
例 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立,则同一工作日至少3人需使用设备的概率为( )
A.0.25 B.0.30
C.0.31 D.0.35
解析:选C.设甲、乙、丙、丁需使用设备分别为事件A,B,C,D,则P(A)=0.6,P(B)=0.5,P(C)=0.5,P(D)=0.4,所以同一工作日最少3人需使用设备的概率为P(ABCD+ABCD+ABCD+ABCD+ABCD)=0.6×0.5×0.5×0.6+0.6×0.5×0.5×0.4+0.6×0.5×0.5×0.4+0.4×0.5×0.5×0.4+0.6×0.5×0.5×0.4=0.31.
4.概率与统计的综合问题
解决概率与统计综合问题应注意的问题
在解决此类综合问题时,应对图表进行观察、分析、提炼,挖掘出图表所给予的有用信息,排除无关数据的干扰,进而抓住问题的实质,达到求解的目的.
例 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
(1)记A为事件“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;
(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
解:(1)事件A发生当且仅当一年内出险次数小于2.
由所给数据知,一年内出险次数小于2的频率为
eq \f(60+50,200)=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为eq \f(30+30,200)=0.3,故P(B)的估计值为0.3.
(3)由所给数据得
调查的200名续保人的平均保费为
0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
例 “世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5), 第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如图所示.已知第三组的频数是第五组频数的3倍.
(1)求a的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;
(2)现从第三、四、五这3组中用分层随机抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.
解:(1)由频率分布直方图可得第三组和第五组的频率之和为1-(0.01+0.07+0.04)×5=0.4,
第三组的频率为0.4×eq \f(3,1+3)=0.3,
所以a=eq \f(0.3,5)=0.06.
该样本数据的平均数x=2.5×0.01×5+7.5×0.07×5+12.5×0.06×5+17.5×0.04×5+22.5×0.02×5=12.25,
所以可估计该校学生一周课外阅读时间的平均值为12.25小时.
(2)易得从第三、四、五组抽取的人数分别为3,2,1,
设为A,B,C,D,E,F,则从该6人中选拔2人的样本点有:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,
其中来自不同的组别的样本点有:
(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,F),(E,F),
共11个,
所以这2人来自不同组别的概率为eq \f(11,15).
品牌
甲
乙
首次出现故障
的时间x(年)
0
相关试卷
这是一份人教B版 (2019)必修 第二册第六章 平面向量初步本章综合与测试同步达标检测题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教B版 (2019)必修 第二册第五章 统计与概率本章综合与测试课后测评,共10页。
这是一份2020-2021学年第十章 概率本章综合与测试课后复习题,共5页。