所属成套资源:湘教版数学八年级上册课件PPT+教案
2021学年2.1 三角形第3课时教案
展开
这是一份2021学年2.1 三角形第3课时教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
第3课时 三角形的内角和与外角【知识与技能】1.掌握三角形内角和定理.2.掌握三角形的内角与外角的关系.【过程与方法】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力;通过小组合作学习,培养集体协作学习的能力及概括能力.【情感态度】让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣.【教学重点】三角形内角和定理.【教学难点】三角形的一个外角等于与它不相邻的两个内角的和.一、创设情境,导入新课我们都知道一个三角形的三个内角的和为180°,你知道三角形的内角和为什么是180°呢?【教学说明】通过问题,提高学生的学习兴趣.二、合作探究,探索新知1.每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验,能否拼出一个角的和为180°.为什么是180°?通过小组合作交流,讨论有几种拼合方法? 开展小组竞赛(看哪个小组的发现多?说明清楚.),各小组派代表展示拼图,并说出理由.2.你能运用几何证明的方法证明三角形的三个内角的和为180°吗?试一试.【教学说明】学生通过动手拼图,再通过证明,总结出三角形的三个内角和是180°,能够加深理解.3.议一议:一个三角形的三个内角中,最多有几个直角?最多有几个钝角?4.直角三角形可用符号“Rt△”来表示,例如直角三角形ABC可以记作“Rt△ABC”,在直角三角形中,夹直角的两边叫作直角边,直角边的对边叫作斜边.两条直角边相等的直角三角形叫作等腰直角三角形.5.三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如下图中∠ACD是∠ACB的一个外角,它与内角∠ACB相邻.6.探究:在图中,外角∠ACD和∠A、∠B之间有什么大小关系?【归纳结论】三角形的一个外角等于与它不相邻的两个内角的和.【教学说明】通过证明,加深对定理的理解.三、运用新知,深化理解1.判断:(1)一个三角形的三个内角可以都小于60°.( × )(2)一个三角形最多只能有一个内角是钝角或直角. ( √ )2.已知AB∥CD,∠A=60°,∠C=25°,则∠E等于(C)A.60° B.25° C.35° D.45°第2题图 3.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=(B)A.50° B.40° C.70° D.35° 第3题图4.观察三角形,并把它们的标号填入相应的括号内:锐角三角形(3 、5)直角三角形(1、4、6)钝角三角形(2、7)5.在△ABC中:①∠A=35°∠C=90° 则∠B=55° ②∠A=50°∠B=∠C 则∠B=65 °③∠A∶∠B∶∠C=3∶2∶1则△ABC是直角三角形 .④∠A-∠C =35°,∠B-∠C =10°, 则∠B =55° .6.在△ABC中∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.解:△ABC中,设∠A=x,则∠C=∠ABC =2xx+2x+2x=180°(三角形内角和为180°) ∴得∠C=2x=72°在△BCD 中,∠BDC=90°则∠DBC =90°-∠C=18°7. 如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2为多少度?解:∵△ABC中,∠A=50°,∴∠AED+∠ADE=130°,∴∠1+∠2=360°-(∠AED+∠ADE)=230°.8.如图,∠A+∠B+∠C+∠D+∠E的度数为多少度? 【分析】如图连接CE,根据三角形的一个外角等于和它不相邻的两个内角和∠1=∠A+∠B=∠2+∠3,在△DCE中有∠D+∠2+∠DCB+∠3+∠AED=180°,即可得∠D+∠A+∠DCB+∠B+∠AED=180°. 解:如图连接CE,根据三角形的外角性质得∠1=∠A+∠B=∠2+∠3,在△DCE中有,∠D+∠2+∠DCB+∠3+∠AED=180°,∴∠D+∠A+∠DCB+∠B+∠AED=180°.【教学说明】通过练习巩固本节课所学的内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题2.1”中第4、5、7 题.在教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达、探索未知领域、寻找客观真理、成为发现者,学生自始至终地参与这一探索过程,发展了学生的创新精神和实践能力.通过有条理的表达“三角形内角和为180°”的拼图及“三角形的一个外角等于与它不相邻的两个内角的和”的证明过程,为今后的几何证明打下基础.
相关教案
这是一份数学2.1 三角形优质课教学设计及反思,共11页。教案主要包含了三角形内角和定理的证明,三角形按角的分类,直角三角形的表示及相关概念,外角的概念及性质等内容,欢迎下载使用。
这是一份初中数学华师大版七年级下册第9章 多边形9.2 多边形的内角和与外角和教案设计,共7页。教案主要包含了小组内部操作,问题探索等内容,欢迎下载使用。
这是一份初中数学湘教版八年级上册2.1 三角形教案设计,共3页。教案主要包含了复习提问,新授,巩固练习,小结等内容,欢迎下载使用。