所属成套资源:2022年高考数学(文数)一轮考点精选练习(含详解)
2022年高考数学(文数)一轮考点精选练习05《函数的单调性与最值》(含详解)
展开
这是一份2022年高考数学(文数)一轮考点精选练习05《函数的单调性与最值》(含详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
一、选择题
已知函数f(x)=ln x+ln(2-x),则( )
A.f(x)在(0,2)单调递增
B.f(x)在(0,2)单调递减
C.y=f(x)的图象关于直线x=1对称
D.y=f(x)的图象关于点(1,0)对称
函数f(x)=lg0.5(x2-4)的单调递增区间为( )
A.(0,+∞) B.(-∞,0) C.(2,+∞) D.(-∞,-2)
已知f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(3a-1x+4a,x<1,,lgax,x≥1))是(-∞,+∞)上的减函数,则a的取值范围是( )
A.(0,1) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,3))) C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(1,7),\f(1,3))) D.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(1,7),1))
给定函数①y=xeq \f(1,2),②y=lgeq \f(1,2)(x+1),③y=|x-1|,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是( )
A.①② B.②③ C.③④ D.①④
已知函数f(x)=lg2x+eq \f(1,1-x),若x1∈(1,2),x2∈(2,+∞),则( )
A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0
函数y=f(x)在[0,2]上单调递增,且函数f(x)的图象关于直线x=2对称,则下列结论成立的是( )
A.f(1)
相关试卷
这是一份2023年高考数学(理数)一轮复习课时05《函数的单调性与最值》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时05《函数的单调性与最值》达标练习含详解doc、2023年高考数学理数一轮复习课时05《函数的单调性与最值》达标练习教师版doc等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份2022年新高考一轮复习考点精选练习29《导数的极值与最值》(含详解),共6页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2022年高考数学(理数)一轮考点精选练习14《导数与函数的极值、最值》(含详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。