所属成套资源:2022年高考数学(文数)一轮考点精选练习(含详解)
2022年高考数学(文数)一轮考点精选练习53《导数与函数的极值、最值》(含详解)
展开
这是一份2022年高考数学(文数)一轮考点精选练习53《导数与函数的极值、最值》(含详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
一、选择题
当函数y=x·2x取极小值时,x=( )
A.eq \f(1,ln2) B.-eq \f(1,ln2) C.-ln2 D.ln2
设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
函数f(x)=(x2-1)2+2的极值点是( )
A.x=1 B.x=-1 C.x=1或-1或0 D.x=0
已知函数f(x)=x3-2x2-4x-7,其导函数为f ′(x),给出以下命题:
①f(x)的单调递减区间是eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2,3),2));
②f(x)的极小值是-15;
③当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f ′(a)(x-a);
④函数f(x)有且只有一个零点.
其中真命题的个数为( )
A.1 B.2 C.3 D.4
已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x10,f(x2)>-eq \f(1,2) B.f(x1)
相关试卷
这是一份2023年高考数学(理数)一轮复习课时15《导数与函数的极值、最值》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时15《导数与函数的极值最值》达标练习含详解doc、2023年高考数学理数一轮复习课时15《导数与函数的极值最值》达标练习教师版doc等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份高考数学(文数)一轮复习课时练习:2.11《第2课时 导数与函数的极值、最值》(学生版)
这是一份2022年新高考一轮复习考点精选练习29《导数的极值与最值》(含详解),共6页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。