北师大版八年级上册1 探索勾股定理教案
展开基本信息
名称
《探索勾股定理》
教材分析
勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理 的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
学情分析
学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
教学目标
知识与能力目标
1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。
2、了解勾股定理的内容。
3、能利用已知两边求直角三角形另一边的长。
过程与方法目标
1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感态度与价值观目标
1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。
教学重难点
重点
探索和证明勾股定理
难点
用拼图方法证明勾股定理
教学策略与 设计说明
依据新课程改革精神与学生认知发展现状,为突出重点,突破难点,有效实现知识的巩固与迁移,本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
教学过程
教学环节(注明每个环节预设的时间)
教师活动
学生活动
设计意图
创设情境导入新课
新知探究
深入探究交流归纳
拼图验证加深理解
应用新知解决问题
出示自制教具(赵爽弦图),观察它们的联系,提出问题,数学家大会为什么用它做会徽呢?它有什么特殊的含义吗?
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。(出示课件)
(1)同学们,请你也来观察下图中的地面,看看能发现些什么?
地面
(2)你能找出图中正方形A、B、C面积之间的关系吗?
(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?
(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?
如图,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形。仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形。
(2)想一想,怎样利用小方格计算正方形A、B、C面积?
猜想:直角三角形两直角边的平方和等于斜边的平方。
(多媒体动画演示验证)
(1)让学生利用学具进行拼图
(2)多媒体课件展示拼图过程及证明过程,理解数学的严密性。
1)做一做
P
625
400
B
A
C
P的面积=
AB= BC=
AC=
6
2
x
(2) X=
3.求下列直角三角形中未知边的长:
12
8
x
17
16
20
x
5
x
学生思考并积极回答
学生思考讨论
在教师的引导下得出结论
“两直角边的平方和等于斜边的平方”
学生思考并回答
学生小组合作进行拼图
学生观看课件
学生独立完成并展示
这样的引入可唤起学生的好奇心和求知欲,激发学生对勾股定理的兴趣,从而较自然的引入课题。
通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。
“问题是思维的起点”,通过层层设问,引导学生发现新知。
渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。
通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。
利用分组讨论,加强合作意识。
1、经历所拼图形与多媒体展示图形的联系与区别。
2、加强数学严密教育。从而更好地理解代数与图形相结合
拓展,提高学生学以致用的能力
课堂小结
1、本节课我们经历了怎样的过程?
2、本节课我们学到了什么?
3、学了本节课后我们有什么感想?
布置作业
教材四页1、2、4必做,3小题努力做
板书设计
探索勾股定理
在直角三角形中,两直角边的平方和等于斜边的平方。
用字母表示:a²+b²=c²
课后反思
本节课主要将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。为此我在教学设计中注重了以下几点:
一、让学生主动想学
通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
二、在课堂教学中,始终注重学生的自主探究
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。
三、教会学生思维,培养学生多种能力
课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……
四、注重了数学应用意识的培养
数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。
学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。另在举勾股定理在生活中的例子时,学生思路不够开阔。以后要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。
数学八年级上册第一章 勾股定理1 探索勾股定理教学设计及反思: 这是一份数学八年级上册第一章 勾股定理1 探索勾股定理教学设计及反思,共7页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观等内容,欢迎下载使用。
数学八年级上册1 探索勾股定理教案设计: 这是一份数学八年级上册1 探索勾股定理教案设计,共6页。
初中北师大版1 探索勾股定理教案: 这是一份初中北师大版1 探索勾股定理教案,共4页。教案主要包含了知识与技能,过程与方法,情感态度与价值观,课堂检测,课时小结,布置作业,板书设计等内容,欢迎下载使用。