2022年新高考一轮复习考点精选练习04《一元二次不等式》(含详解)
展开
这是一份2022年新高考一轮复习考点精选练习04《一元二次不等式》(含详解),共5页。
、选择题
使不等式2x2-5x-3≥0成立的一个充分不必要条件是( )
A.x≥0 B.x2 C.x∈{-1,3,5} D.x≤-eq \f(1,2)或x≥3
已知关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则有( )
A.m≤-3 B.m≥-3 C.-3≤m<0 D.m≥-4
已知关于x的不等式kx2-6kx+k+8≥0对任意x∈R恒成立,则k的取值范围是( )
A.0≤k≤1 B.0<k≤1
C.k<0或k>1 D.k≤0或k≥1
若对任意的x∈[-1,2],都有x2-2x+a≤0(a为常数),则a的取值范围是( )
A.(-∞,-3] B.(-∞,0] C.[1,+∞) D.(-∞,1]
若不等式x2-2ax+a>0对一切实数x∈R恒成立,则关于t的不等式at2+2t-3<1的解集为( )
A.(-3,1) B.(-∞,-3)∪(1,+∞) C.∅ D.(0,1)
在R上定义运算:eq \b\lc\(\rc\)(\a\vs4\al\c1(\(\s\up11(a),\s\d4(c)) \(\s\up7(b),\s\d5(d))))=ad-bc,若不等式eq \b\lc\(\rc\)(\a\vs4\al\c1(\(\s\up11(x-1),\s\d4(a+1)) \(\s\up7(a-2),\s\d5(x))))≥1对任意实数x恒成立,则实数a的最大值为( )
A.-eq \f(1,2) B.-eq \f(3,2) C.eq \f(1,2) D.eq \f(3,2)
已知a∈Z,关于x的一元二次不等式x2-6x+a≤0的解集中有且仅有3个整数,则所有符合条件的a的值之和是( )
A.13 B.18 C.21 D.26
关于x的不等式ax-b0的解集是( )
A.(-∞,-1)∪(3,+∞) B.(1,3)
C.(-1,3) D.(-∞,1)∪(3,+∞)
不等式eq \f(1-x,2+x)≥1的解集为( )
A.[-2,- eq \f(1,2)] B.(-2,- eq \f(1,2)]
C.(-∞,-2)∪(- eq \f(1,2),+∞) D.(-∞,-2]∪(- eq \f(1,2),+∞)
在关于x的不等式x2-(a+1)x+a<0的解集中至多包含2个整数,则a的取值范围是( )
A.(-3,5) B.(-2,4) C.[-3,5] D.[-2,4]
已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是( )
A.(-1,0)
B.(2,+∞)
C.(-∞,-1)∪(2,+∞)
D.不能确定
关于x的不等式x2-(a+1)x+a
相关试卷
这是一份2022年新高考一轮复习考点精选练习01《集合》(含详解),共4页。
这是一份2022年新高考一轮复习考点精选练习08《幂函数》(含详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2022年新高考一轮复习考点精选练习36《圆的方程》(含详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。