


所属成套资源:江西省九校2022届高三上学期期中联考试卷及答案
江西省九校2022届高三上学期期中联考数学(文)试题含答案
展开
这是一份江西省九校2022届高三上学期期中联考数学(文)试题含答案,共10页。试卷主要包含了请将答案正确填写在答题卡上,设,则f)的值为,已知,,,则,函数的图像大致为,已知数列满足等内容,欢迎下载使用。
总分:150分 考试时间:120分钟
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题 (本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符号题目要求的)
1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则( )
A.{-1} B.{0,1} C.{-1,2,3} D.{-1,0,1,3}
2.命题“”的否定是( )
A. B.
C. D.
3. 已知复数满足,则复数对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.设,则f(f(2))的值为( )
A.0B.1C.2D.3
5.已知,,,则( )
A. B. C. D.
6. 如图所示,在中,,,若,,则( )
A. B.
C. D.
7.数列是公差不为零的等差数列,且,数列是等比数列,且,则( )
A.B.C.D.
8.函数的图像大致为( )
A.B.
C. D.
9.的内角,,的对边分别为,,.若,,则为( )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形
10.已知函数的最小正周期为,其图象关于直线对称.给出下面四个结论:①将的图象向左平移个单位长度后得到的函数图象关于y轴对称;②点为图象的一个对称中心;③;④在区间上单调递增.其中正确的结论为( )
A.①②B.②③C.②④D.①④
11.定义为个正数的“均倒数”.若已知数列的前项的“均倒数”为,又,则( ).
A.B.C.D.
12.已知函数(为自然对数的底数),若在上恒成立,则实数的取值范围是( )
A.B.C.D.
二、填空题(本题共4小题,每小题5分,共20分)
13.已知向量 ,向量, 与共线,则 ___________.
14.已知,则___________.
15.已知中,,,点是线段的中点,则______.
16.已知数列满足:,(,),则___________.
三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)
17(10分).已知
(1)若p为真命题,求x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
18(12分).已知数列{}是首项=,公差为的等差数列,数列{}是首项=,公比为的正项等比数列,且公比等于公差,+=.
(1)求数列{},{}的通项公式;
(2)若数列{}满足=·(),求数列{}的前项和.
19(12分).已知函数.
(1)求f(x)的最小正周期;
(2)若任意,恒成立,求范围.
20(12分).在中,所对的边分别为,向量,且.
(1)求角A的大小;
(2)若外接圆的半径为2,求面积的最大值.
21(12分).已知函数,曲线在点处切线方程为.
(1)求的值;
(2)讨论的单调性,并求的极大值.
22(12分).设函数.
(Ⅰ)讨论的导函数的零点的个数;
(Ⅱ)证明:当时.
文科数学答案
一.选择题
12.【详解】在上恒成立,等价于在上恒成立,
构造,则
当时,;当时,
故在单调递减,在单调递增
的最小值为
实数的取值范围是.所以选D.
填空题
-2 14. 15. 16.
解答题
17.(1){x|1≤x≤4};(2).
【详解】(1)若p为真命题,则x2≤5x﹣4,即x2﹣5x+4≤0,
即(x﹣1)(x﹣4)≤0,即1≤x≤4,······································3分
所以x的取值范围{x|1≤x≤4}.··········································4分
(2)记A={x|1≤x≤4}.q:x2﹣(a+2)x+2a0(a>2)
故当a>2时,B={x|2<x<a}.········································7分
因为p是q的必要不充分条件,所以B A,
所以,所以2<a≤4,·············································9分
故实数a的取值范围为.···································10分
18.【详解】解:(1)由题意,可得,
因为,则,解得或,·····················2分
因为等比数列各项为正项,所以,
则,;··········································5分
(2)因为,,故,··················6分
,①
,②··········8分
将①-②得:
即
有··············11分
所以.········································12分
19.【详解】解(1)=sin 2x+cs2 x-
=2 ············································3分
f(x)的最小正周期为π;·········································4分
(2) ,······························6分
当,即时,············9分
, 使恒成立················11分
.··························································12分
20.【详解】(1)依题意得:,
则,····································2分
∴,又,
∴,,故.·········································5分
(2)法一:由正弦定理得,,
∴面积·······8分
由得:,则,·······························10分
∴,故,即时,.··············12分
法二:由正弦定理得:,
由余弦定理,
∴,当且仅当时取等号,····························8分
∴,.······································12分
21.【详解】(1).································1分
由已知得,.·············································2分
故,.从而,.·······································4分
(2)由(1)知,,
.····························6分
令得,或.····································7分
从而当时,;
当时,.········································10分
故在,上单调递增,在上单调递减.·····11分
当时,函数取得极大值,极大值为.···········12分
22.【详解】(Ⅰ)的定义域为,.············1分
当时,,没有零点;····································2分
当时,因为单调递增,单调递增,所以在单调递增.··3分
又,当b满足且时,,·······················4分
故当时,存在唯一零点.······································5分
(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;
当时,.故在单调递减,在单调递增,··7分
所以当时,取得最小值,最小值为.························8分
由于,所以.···············11分
故当时,.·········································12分
1
2
3
4
5
6
7
8
9
10
11
12
C
C
D
B
B
D
A
D
A
A
B
D
相关试卷
这是一份江西省九江市十校2023届高三上学期11月联考数学(文)试题,共9页。试卷主要包含了选择题的作答,非选择题的作答,选考题的作答,已知数列满足,,,则,设,,,以下四个命题等内容,欢迎下载使用。
这是一份2021江西省五市九校高三上学期第一次联考数学(文)试题PDF版含答案
这是一份2022届江西省赣州市十六县(市)十七校高三上学期期中联考数学(文)试题(word版含答案),共8页。