2021-2022学年山东省济宁市嘉祥县九年级(上)期中数学试卷 解析版
展开
这是一份2021-2022学年山东省济宁市嘉祥县九年级(上)期中数学试卷 解析版,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年山东省济宁市嘉祥县九年级(上)期中数学试卷
一、选择题:(本大题共10个小题,每小题3分共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)在平面直角坐标系中,点A(﹣2,1)关于原点的对称点为A′,则点A′的坐标是( )
A.(﹣2,﹣1) B.(2,1) C.(﹣1,2) D.(2,﹣1)
2.(3分)下列图形中,不是中心对称图形的是( )
A.圆 B.菱形 C.矩形 D.等边三角形
3.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是( )
A.16(1﹣x)2=9 B.9(1+x)2=16 C.16(1﹣2x)=9 D.9(1+2x)=16
4.(3分)如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为( )
A.110° B.120° C.125° D.130°
5.(3分)关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是( )
A.a≤且a≠﹣2 B.a≤ C.a<且a≠﹣2 D.a<
6.(3分)将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A.(﹣2,2) B.(﹣1,1) C.(0,6) D.(1,﹣3)
7.(3分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则( )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
8.(3分)如图,在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )
A.6 B.9 C.12 D.15
9.(3分)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是( )
A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0
10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1.下列结论:①abc>0;②b2﹣4ac>0;③a+c>b;④8a+c<0,正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本大题共5小题,每小题3分,共15分)
11.(3分)抛物线y=2(x+5)2﹣3的顶点坐标为 .
12.(3分)如图,AB为半圆O的直径,OC⊥AB,OD平分∠BOC,交半圆于点D,AD交OC于点E,则∠AEO的度数是 度.
13.(3分)当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m= .
14.(3分)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为 .
15.(3分)如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为公共对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为 .
三、解答题:(本大题共7小题,共55分)
16.(6分)(1)解方程:3x2﹣2x﹣2=0.
(2)解方程:x(x﹣7)=8(7﹣x).
17.(7分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).
(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;
(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;
(3)观察图形可知,△A1B1C1与△A2B2C2关于点( , )中心对称.
18.(6分)若直角三角形的两边长分别是方程x2﹣7x+12=0的两根,求该直角三角形的面积.
19.(7分)如图,有一张边AB靠墙的长方形桌子ABCD,长120cm,宽60cm.有一块长方形台布EFMN的面积是桌面面积的2倍,并且如图所示铺在桌面上时,三边垂下的长度中有两边相等(AE=BF),另外一边是AE的倍(即CD与MN之间的距离).求这块台布的长和宽.
20.(9分)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系.图中的抛物线C1:y=﹣x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣+bx+c运动.
(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);
(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?
21.(9分)如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,DF⊥AB于点F,连接OF,且AF=1.
(1)求证:DF是⊙O的切线;
(2)求线段OF的长度.
22.(11分)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
(1)求抛物线的函数表达式;
(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.
2021-2022学年山东省济宁市嘉祥县九年级(上)期中数学试卷
参考答案与试题解析
一、选择题:(本大题共10个小题,每小题3分共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)在平面直角坐标系中,点A(﹣2,1)关于原点的对称点为A′,则点A′的坐标是( )
A.(﹣2,﹣1) B.(2,1) C.(﹣1,2) D.(2,﹣1)
【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.
【解答】解:点A(﹣2,1)关于原点对称的点的坐标是(2,﹣1).
故选:D.
2.(3分)下列图形中,不是中心对称图形的是( )
A.圆 B.菱形 C.矩形 D.等边三角形
【分析】根据中心对称图形的概念和各图的性质求解.
【解答】解:A、B、C中,既是轴对称图形,又是中心对称图形;
D、只是轴对称图形.
故选:D.
3.(3分)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是( )
A.16(1﹣x)2=9 B.9(1+x)2=16 C.16(1﹣2x)=9 D.9(1+2x)=16
【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格×(1﹣降价的百分率),则第一次降价后的价格是16(1﹣x),第二次后的价格是16(1﹣x)2,据此即可列方程求解.
【解答】解:根据题意得:16(1﹣x)2=9,
故选:A.
4.(3分)如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为( )
A.110° B.120° C.125° D.130°
【分析】由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=110°,再利用圆周角定理可求∠ADB=55°,再根据圆内接四边形对角互补可求∠ACB.
【解答】解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,
∵AP、BP是⊙O的切线,
∴∠OAP=∠OBP=90°,
∴∠AOB=360°﹣90°﹣90°﹣70°=110°,
∴∠ADB=AOB=55°,
又∵圆内接四边形的对角互补,
∴∠ACB=180°﹣∠ADB=180°﹣55°=125°.
故选:C.
5.(3分)关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是( )
A.a≤且a≠﹣2 B.a≤ C.a<且a≠﹣2 D.a<
【分析】根据一元二次方程的定义和判别式的意义得到a+2≠0且△≥0,然后求出两不等式的公共部分即可.
【解答】解:∵关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,
∴△≥0且a+2≠0,
∴(﹣3)2﹣4(a+2)×1≥0且a+2≠0,
解得:a≤且a≠﹣2,
故选:A.
6.(3分)将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A.(﹣2,2) B.(﹣1,1) C.(0,6) D.(1,﹣3)
【分析】直接将原函数写成顶点式,再利用二次函数平移规律:左加右减,上加下减,进而得出平移后解析式,再把各选项的点代入判断即可.
【解答】解:y=﹣x2﹣2x+3
=﹣(x2+2x)+3
=﹣[(x+1)2﹣1]+3
=﹣(x+1)2+4,
∵将抛物线y=﹣x2﹣2x+3向右平移1个单位,再向下平移2个单位,
∴得到的抛物线解析式为:y=﹣x2+2,
当x=﹣2时,y=﹣(﹣2)2+2=﹣4+2=﹣2,故(﹣2,2)不在此抛物线上,故A选项不合题意;
当x=﹣1时,y=﹣(﹣1)2+2=﹣1+2=1,故(﹣1,1)在此抛物线上,故B选项符合题意;
当x=0时,y=﹣02+2=0+2=2,故(0,6)不在此抛物线上,故C选项不合题意;
当x=1时,y=﹣12+2=﹣1+2=1,故(1,﹣3)不在此抛物线上,故D选项不合题意;
故选:B.
7.(3分)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则( )
A.y3<y2<y1 B.y3<y1<y2 C.y2<y3<y1 D.y1<y3<y2
【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.
【解答】解:抛物线的对称轴为直线x=﹣=﹣2,
∵a=﹣3<0,
∴x=﹣2时,函数值最大,
又∵﹣3到﹣2的距离比1到﹣2的距离小,
∴y3<y1<y2.
故选:B.
8.(3分)如图,在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )
A.6 B.9 C.12 D.15
【分析】根据题意求出OC,再由垂径定理得CD=CE,然后由勾股定理求出CD=6,即可求解.
【解答】解:∵直径AB=15,
∴OD=OB=,
∵OC:OB=3:5,
∴OC=,
∵DE⊥AB,
∴CD=CE,
在Rt△OCD中,由勾股定理得:CD===6,
∴DE=2CD=12,
故选:C.
9.(3分)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是( )
A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0
【分析】先设这个方程的两根是α、β,根据两个根是﹣3,1和两个根是5,﹣4,得出α+β=﹣p=﹣2,αβ=q=﹣20,从而得出符合题意的方程.
【解答】解:设此方程的两个根是α、β,根据题意得:α+β=﹣p=﹣2,αβ=q=﹣20,
则以α、β为根的一元二次方程是x2+2x﹣20=0.
故选:B.
10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1.下列结论:①abc>0;②b2﹣4ac>0;③a+c>b;④8a+c<0,正确的有( )
A.1个 B.2个 C.3个 D.4个
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断即可.
【解答】解:由图象可知,a<0,c>0,
对称轴直线x=﹣>0,
∴b>0,
∴abc<0,
故①错误;
∵抛物线与x轴有两个交点,
∴Δ=b2﹣4ac>0,
故②正确;
∵当x=﹣1,y>0,
∴a﹣b+c>0,即a+c>b,
故③正确;
∵对称轴是直线x=1,
∴﹣=1,
∴b=﹣2a,
∵当x=﹣2时,y=4a﹣2b+c<0,
∴8a+c<0,
故④正确.
故选:C.
二、填空题(本大题共5小题,每小题3分,共15分)
11.(3分)抛物线y=2(x+5)2﹣3的顶点坐标为 (﹣5,﹣3) .
【分析】由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.
【解答】解:∵抛物线y=2(x+5)2﹣3,
∴顶点坐标为:(﹣5,﹣3).
故答案为:(﹣5,﹣3).
12.(3分)如图,AB为半圆O的直径,OC⊥AB,OD平分∠BOC,交半圆于点D,AD交OC于点E,则∠AEO的度数是 67.5 度.
【分析】欲求∠AEO,需先求出∠OAD的度数;OD平分直角∠COB,易得∠BOD=45°;根据同弧所对的圆周角和圆心角的关系,即可求得∠OAD的度数,由此得解.
【解答】解:∵OD平分∠BOC,且∠BOC=90°,
∴∠BOD=∠BOC=45°;
∴∠OAD=∠BOD=22.5°;
Rt△AEO中,∠AOE=90°,
则∠AEO=90°﹣∠OAE=67.5°.
13.(3分)当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m= 10 .
【分析】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.
【解答】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,
∴该函数开口向上,对称轴为x=2,
∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,
∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10,
故答案为:10.
14.(3分)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为 (4,2) .
【分析】画出平面直角坐标系,作出线段AC,BD的垂直平分线的交点P,点P即为旋转中心.
【解答】解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).
故答案为(4,2).
15.(3分)如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为公共对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为 2 .
【分析】根据题意可推出OB=2,OA=1,AD=OC=2,根据平移的性质及抛物线的对称性可知阴影部分的面积等于矩形OCDA的面积,利用矩形的面积公式进行计算即可.
【解答】解:过抛物线L2的顶点D作CD∥x轴,与y轴交于点C,如右图所示:
则四边形OCDA是矩形,
∵抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),
∴OB=2,OA=1,
将抛物线L1向下平移两个单位长度得抛物线L2,则AD=OC=2,
由图可知,阴影部分的面积等于矩形OCDA的面积,
∴S阴影部分=S矩形OCDA=OA•AD=1×2=2.
故答案为:2.
三、解答题:(本大题共7小题,共55分)
16.(6分)(1)解方程:3x2﹣2x﹣2=0.
(2)解方程:x(x﹣7)=8(7﹣x).
【分析】(1)运用公式法求解比较简便;
(2)利用因式分解法(提公因式法)求解比较简便.
【解答】解:(1)这里a=3,b=﹣2,c=﹣2,
△=b2﹣4ac
=4+4×3×2
=28>0.
∴x=
=
=.
∴x1=,x2=;
(2)x(x﹣7)=﹣8(x﹣7),
∴x(x﹣7)+8(x﹣7)=0,
∴(x﹣7)(x+8)=0,
∴x1=7,x2=﹣8.
17.(7分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).
(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;
(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;
(3)观察图形可知,△A1B1C1与△A2B2C2关于点( ﹣2 , 0 )中心对称.
【分析】(1)依据平移的方向和距离,即可得到平移后的△A1B1C1;
(2)依据△ABC绕原点O旋转180°,即可画出旋转后的△A2B2C2;
(3)依据对称点连线的中点的位置,即可得到对称中心的坐标.
【解答】解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)由图可得,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.
故答案为:﹣2,0.
18.(6分)若直角三角形的两边长分别是方程x2﹣7x+12=0的两根,求该直角三角形的面积.
【分析】先利用因式分解法解方程得出直角三角形的两边长度,再分4为直角边和斜边两种情况分别求解即可.
【解答】解:∵x2﹣7x+12=0,
∴x=3或x=4.
①当长是4的边是直角边时,该直角三角形的面积是×3×4=6;
②当长是4的边是斜边时,第三边是=,该直角三角形的面积是×3×=.
综上,该直角三角形的面积为6或.
19.(7分)如图,有一张边AB靠墙的长方形桌子ABCD,长120cm,宽60cm.有一块长方形台布EFMN的面积是桌面面积的2倍,并且如图所示铺在桌面上时,三边垂下的长度中有两边相等(AE=BF),另外一边是AE的倍(即CD与MN之间的距离).求这块台布的长和宽.
【分析】设下垂长度BF为x,则AE=BF=x,运用长方形台布EFMN的面积是桌面面积的2倍可列出一元二次方程,求解即可得出答案.
【解答】解:设下垂长度BF为x,则AE=BF=x,
根据题意得(120+2x)(60+x)=2×120×60
∴x2+100x﹣2400=0
解得:x1=20,x2=﹣120(不符合题意,舍去)
∴120+2x=120+2×20=160,60+x=60+×20=90.
答:这块台布的长为160cm,宽为90cm.
20.(9分)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系.图中的抛物线C1:y=﹣x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣+bx+c运动.
(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);
(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?
【分析】(1)根据题意将点(0,4)和(4,8)代入C2:y=﹣x2+bx+c求出b、c的值即可写出C2的函数解析式;
(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:﹣m2+m+4﹣(﹣m2+m+1)=1,解出m即可.
【解答】解:(1)由题意可知抛物线C2:y=﹣x2+bx+c过点(0,4)和(4,8),将其代入得:
,
解得:,
∴抛物线C2的函数解析式为:y=﹣x2+x+4;
(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:
﹣m2+m+4﹣(﹣m2+m+1)=1,
整理得:(m﹣12)(m+4)=0,
解得:m1=12,m2=﹣4(舍去),
故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.
21.(9分)如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,DF⊥AB于点F,连接OF,且AF=1.
(1)求证:DF是⊙O的切线;
(2)求线段OF的长度.
【分析】(1)连接OD,根据等边三角形及圆性质求出OD∥AB,再由DF⊥AB,推出求出OD⊥DF,根据切线的判定推出即可;
(2)由∠A=60o,OD⊥DF,AF=1可求得AD,AF,AB的长度,再根据中位线性质求出OD的长度,根据勾股定理即可求得OF的长.
【解答】(1)证明:连接OD,
∵△ABC是等边三角形,
∴∠C=∠A=60o,
∵OC=OD,
∴△OCD是等边三角形,
∴∠CDO=∠A=60o,
∴OD∥AB,
∵DF⊥AB,
∴∠FDO=∠AFD=90°,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:∵OD∥AB,OC=OB,
∴OD是△ABC的中位线,
∵∠AFD=90°,∠A=60o,
∴∠ADF=30°,
∵AF=1
∴CD=OD=AD=2AF=2,
在Rt△ADF中,由勾股定理得DF2=AD2﹣AF2=3,
在Rt△ODF中,由勾股定理得OF=,
∴线段OF的长为.
22.(11分)如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB=4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.
(1)求抛物线的函数表达式;
(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;
(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.
【分析】(1)根据OA=2,OB=4确定点A和B的坐标,代入抛物线的解析式列方程组解出即可;
(2)如图1,过D作DG⊥x轴于G,交BC于H,利用待定系数法求直线BC的解析式,设D(x,x2﹣x﹣6),则H(x,x﹣6),表示DH的长,根据△BCD的面积是,列方程可得x的值,因为D在对称轴的右侧,所以x=1不符合题意,舍去,利用三角形面积公式可得结论;
(3)分两种情况:N在x轴的上方和下方,根据y=确定N的坐标,并正确画图.
【解答】解:(1)∵OA=2,OB=4,
∴A(﹣2,0),B(4,0),
把A(﹣2,0),B(4,0)代入抛物线y=ax2+bx﹣6中得:,
解得:,
∴抛物线的解析式为:y=x2﹣x﹣6;
(2)如图1,过D作DG⊥x轴于G,交BC于H,
当x=0时,y=﹣6,
∴C(0,﹣6),
设BC的解析式为:y=kx+n,
则,解得:,
∴BC的解析式为:y=x﹣6,
设D(x,x2﹣x﹣6),则H(x,x﹣6),
∴DH=x﹣6﹣(x2﹣x﹣6)=﹣,
∵△BCD的面积是,
∴,
∴,
解得:x=1或3,
∵点D在直线l右侧的抛物线上,
∴D(3,﹣),
∴△ABD的面积===;
(3)分两种情况:
①如图2,N在x轴的上方时,四边形MNBD是平行四边形,
∵B(4,0),D(3,﹣),且M在x轴上,
∴N的纵坐标为,
当y=时,即x2﹣x﹣6=,
解得:x=1+或1﹣,
∴N(1﹣,)或(1+,);
②如图3,点N在x轴的下方时,四边形BDNM是平行四边形,此时M与O重合,
∴N(﹣1,﹣);
综上,点N的坐标为:(1﹣,)或(1+,)或(﹣1,﹣).
相关试卷
这是一份2023-2024学年山东省济宁市嘉祥县八年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年山东省济宁市嘉祥县八年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年山东省济宁市嘉祥县八年级(上)期中数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。